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Shift Exchange

@ A firm assigns shifts to its employees:

Mon Tue Wed Thu Fri

am Alice Carol Bob Carol Bob
pm Bob Alice Alice Alice Carol

@ Each employee has strict preferences over all possible “schedules.”

o Reallocating the shifts could make all workers happier.



Shift Exchange

@ A firm assigns shifts to its employees:

Mon Tue Wed Thu Fri

am Alice Carol Bob Carol Bob

pm Bob Alice Alice Alice Carol

@ Each employee has strict preferences over all possible “schedules.’
o Reallocating the shifts could make all workers happier.

@ How, then, should trades be organized?
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Reallocation problems

Shift Exchange is an instance of multi-object reallocation without transfers:

@ a group of agents, each of whom

> initially owns a set of heterogeneous and indivisible objects.
> has strict preferences over bundles of objects.

» cares only about her own assigned bundle.

@ no restrictions on trade, i.e., all allocations are admissible.

@ a generalization of the "housing market” (Shapley and Scarf, 1974).
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Shift Exchange is an instance of multi-object reallocation without transfers:

@ a group of agents, each of whom

> initially owns a set of heterogeneous and indivisible objects.
> has strict preferences over bundles of objects.

» cares only about her own assigned bundle.

@ no restrictions on trade, i.e., all allocations are admissible.

@ a generalization of the "housing market” (Shapley and Scarf, 1974).

Other instances include:

@ course (re)allocation (Budish, 2011), tuition and student exchange
(Dur and Unver, 2019: Andersson et al., 2021), living-donor kidney
exchange (Roth et al., 2005, 2004).
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Two challenges

Multi-object reallocation is a difficult problem:

(1) Hard for agents to know (much less communicate) their preferences
» as Roth (2015, p. 331) explains,

“a practical mechanism must simplify the language in which preferences
can be reported, and by doing so it will restrict which preferences can be
reported.”

» we focus on rules with simple reporting languages,
e.g., individual-good-based rules / “preference trees”

(2) Conflict among “ideal” properties

» Pareto efficiency, individual rationality, and strategy-proofness are
incompatible (Sénmez, 1999).

> we circumvent the incompatibility by relaxing Pareto efficiency and
strategy-proofness.
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Our contribution

@ Our main result is a characterization of TTC under “responsive”
preferences: it is the only individual-good-based rule satisfying
balancedness together with

» individual-good efficiency
» individual rationality, and

» truncation-proofness.

@ We also obtain new characterizations for the “lexicographic” and
“conditionally lexicographic” preference domains, as well as for the
housing market.

@ The upshot: TTC performs surprisingly well according to the three
criteria of interest.
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Related Literature

Related models of multi-unit reallocation

@ Altuntas et al. (2023): lexicographic preferences

@ Bird et al. (2022): multi-unit housing market

@ Manjunath and Westkamp (2021): trichotomous preferences

@ Andersson et al. (2021): dichotomous preferences
Single-unit reallocation

@ Shapley and Scarf (1974), Ma (1994)

@ proof technology from Sethuraman (2016) and Ekici (2024)

We owe the largest debt to Altuntas et al. (2023), who proved
@ TTC is drop strategy-proof
@ the first characterization of TTC



Outline

© Setup



Model: Preliminaries

A problem consists of:

@ aset N ={1,2,...,n} of agents
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A problem consists of:
@ aset N ={1,2,...,n} of agents
@ aset O of heterogeneous and indivisible objects, with |O] > n.

@ an initial allocation w = (w;);c of objects to agents s.th.

» w; Nwj =0 when i # j
> Uz‘eN w; =0
> w; is agent i's (nonempty) endowment

e a profile P = (P;),_y of strict preferences over bundles, 2°

» each P; belongs to some domain P
» R, is the associated “at least as good as" relation

N, O,w are fixed, so we identify a problem with its profile P.

Thus, PV is the set of all problems.
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Model: Allocations and rules

@ An allocation p = (j;);c v is a (re)assignment of objects to agents
s.th.

> piNpj =0 whenizj
> UieN i = O
> u; is agent i's (nonempty) assignment

@ A denotes the set of allocations

@ A rule (on P) is a systematic procedure for reallocating the objects,
i.e., a function ¢ : PN — A.
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Lexicographic Preferences

@ Agent i's preferences P; are lexicographic if
for any distinct bundles X and Y,

> if ¢ prefers the best object in X to thatin Y, then X P, Y;

> if these objects are the same, then ¢ compares the second-best object in
X to that in Y, and so on.

» if X DY, then X P, Y.

o Let £ denote the lexicographic domain.

@ Any P; € L is identified by its ranking over singletons
eg., P:01,09,...,0, means P; € L and 01 P, 02 P; -+ - P; op,.

11



Top Trading Cycles

For each profile P, the TTC rule selects the allocation ' "¢ (P) obtained
as follows.

TTC(P)
For each step t > 1,
@ Each agent points to her top-ranked remaining object.

Each object points to its owner.

All cycles are “executed.”

Remove all objects (but not the agents) involved in a cycle.

If no objects remain, stop and return the allocation.

12



Top Trading Cycles

Consider following problem (with endowments in red):

P P, P

a a
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b b
d ¢ ¢
b d d



Top Trading Cycles

Consider following problem (with endowments in red):

P P, P
c a a
a b b
d ¢ ¢
b d d




Top Trading Cycles

Consider following problem (with endowments in red):

P P, P

P11 (P) = ({e,d} {a} , {b})

13
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Properties: |

A rule ¢ satisfies

@ balancedness if, for each profile P and each agent i, |p; (P)| = |wil.
@ Pareto efficiency if, for each profile P, ¢ (P) is Pareto efficient.
© individual rationality if, for each profile P and each agent i,

vi (P) R; w;.

@ the worst endowment lower bound if, for each profile P and each
agent 4,
foralloe ;i (P), oR; H}ain (wi) .
» eg.,if P :a, bz, cdy, e and w;, = {z,y},
then @; (P) does not contain e.

14



Properties: Il (Incentives)
Given agent i's true preference P;, we say that

e P! is a drop strategy if it is obtained by dropping an object in O\w;

)

to the bottom.

@ P is a truncation strategy if it is obtained by dropping a “tail

7
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Properties: Il (Incentives)

Given agent i's true preference P;, we say that

e P! is a drop strategy if it is obtained by dropping an object in O\w;
to the bottom.

e P’ is a truncation strategy if it is obtained by dropping a “tail
subset” of O\w; to the bottom.?
Example
Suppose P; : a,b, z,c,d,y,c and w; = {x,y}. Then:
@ P/ :b,x,c,d,y,c.ais obtained by dropping object a.
e P’:a,b,x,cy,d, cis obtained by “truncating at c”
i.e., dropping the set {0 € O\w; | ¢ P; o} = {d, e}.
@ P°:a,x,y,b. c.d e is obtained by “truncating at a”
i.e., dropping the set {0 € O\w; | a P; o} = {b, ¢, d, e}.

lie., a subset X such thatifz € X, y € O\w;, and = P; y, then y € X
15



Properties: Il (Incentives)
Given agent i's true preference P;, we say that

e P! is a drop strategy if it is obtained by dropping an object in O\w;

)

to the bottom.

@ P is a truncation strategy if it is obtained by dropping a “tail

7

subset” of O\w; to the bottom.?

A rule pis

@ drop strategy-proof if no agent can manipulate via drop strategies.

@ truncation-proof if no agent can manipulate via truncation strategies.

© strategy-proof if no agent can manipulate via any strategies.

lie., a subset X such thatifz € X, y € O\w;, and = P; y, then y € X

15



Properties of TTC

Proposition

On the lexicographic domain, TTC satisfies

000000

Pareto efficiency,

balancedness,

individual rationality,

the worst endowment lower bound,
truncation-proofness,

drop strategy-proofness.

16
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Two characterizations

Theorem

On the lexicographic domain, only TTC satisfies
@ balancedness,

@ Pareto efficiency,

@ the worst endowment lower bound, and

o truncation-preefness drop strategy-proofness.

Lemma

If a rule satisfies drop strategy-proofness and the worst endowment lower
bound, then it is truncation-proof.

V.

17



Independence of properties

@ Pareto efficiency: no-trade rule

@ worst endowment lower bound: serial dictatorships subject to
balancedness

@ balancedness: serial dictatorships subject to worst endowment lower
bound

@ truncation-proofness / drop strategy-proofness: straightforward.
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Independence of properties

@ Pareto efficiency: no-trade rule
@ worst endowment lower bound: serial dictatorships subject to

balancedness
@ balancedness: serial dictatorships subject to worst endowment lower

bound
@ truncation-proofness / drop strategy-proofness: straightforward.

Remark
On the lexicographic domain, there are other rules satisfying

@ balancedness,
o Pareto efficiency,
@ individual rationality, and

@ truncation-proofness.

18



Discussion: Properties

Balancedness: for each profile P and each agent i, |p; (P)| = |wil.

@ an inviolable constraint in many practical problems:

> in shift reallocation, it may be imposed for training reasons
> a requirement in student exchange programs (e.g., Erasmus, The
Tuition Exchange)

@ in the absence of constraints, it has some normative appeal:

» simplicity: balanced allocations can be obtained from single-object
exchanges.

» a mild form of equity

19



Discussion: Properties

The worst endowment lower bound: for each profile P and each agent i,
i (P) C{o€ O ]oR;minp, (w;)}.

@ agrees with individual rationality for single-object problems:
> one possible extension to multi-object problems.
@ restricts the set of objects that can make up an agent’s bundle

» under individual rationality, an agent can be assigned any object if part
of a desirable bundle.

19



Discussion: Properties

Truncation-proofness: no agent can manipulate via truncation strategies.

@ coupled with worst endowment lower bound, it ensures agents cannot
benefit by “vetoing” objects they do not own.

@ truncations are compelling and simple to implement

>

>

>

agents need only identify cutoff object
very close to true preferences (they agree on O\w; and on w;).

in many settings, truncations are “exhaustive” (Roth and Rothblum,
1999; Ehlers, 2008; Kojima and Pathak, 2009; Kojima, 2013).

hence, a minimal requirement.

19
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Responsive preferences

@ Agent i's preferences P; are responsive if
for any bundle X and any y,z € O\ X,

(XUy) P (XUz) < yP =z
@ Let R denote the responsive domain. Note that £ C R.

e Given P; € R, let =% denote the associated rank-order list over O.
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Responsive preferences

@ Agent i's preferences P; are responsive if
for any bundle X and any y,z € O\ X,

(XUy) P (XUz) < yP =z
@ Let R denote the responsive domain. Note that £ C R.

e Given P; € R, let =% denote the associated rank-order list over O.

Remark.
There are many “responsive extensions” of a rank-order list =%

For example, it is possible that
3 /
wFPiey Fiia b, c,d

even though
{a,d} P;{b,c} and {b,c} P/ {a,d}.

21



Simple rules

® We focus on rules that depend only on the orderings == (="%);cy
associated with a profile P = (Pi>7;€N-

e Formally, a rule ¢ is individual-good-based if

forall P,P' e RN, »P=>" — o (P) = (P).
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@ We focus on rules that depend only on the orderings == (=Fi),cn
associated with a profile P = (P;),c -

e Formally, a rule ¢ is individual-good-based if
forall P,P' e RN, »P=>" — o (P) = (P).

@ One interpretation is that the rule elicits only =%, but agents
evaluate allocations based on their underlying preferences P.

@ This assumption is common—in theory and in practice.

> e.g., in the National Resident Matching Program, hospitals report only
their rank-order lists over individual doctors (Milgrom, 2009, 2011).
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Simple rules

® We focus on rules that depend only on the orderings == (="%);cy
associated with a profile P = (P;),c -

Formally, a rule ¢ is individual-good-based if

forall P,P' e RN, »P=>" — o (P) = (P).
@ One interpretation is that the rule elicits only =%, but agents
evaluate allocations based on their underlying preferences P.

@ This assumption is common—in theory and in practice.

> e.g., in the National Resident Matching Program, hospitals report only
their rank-order lists over individual doctors (Milgrom, 2009, 2011).

@ TTC is an individual-good-based rule.

22



Properties: Il

Our properties are defined as before, with the understanding that drop
strategies and truncation strategies for P; are defined wrt =%,

Example
Suppose P is such that =%i: a,b,,¢,d,y, e and w; = {x,y}. Then:
e (any P/ with) ~Pi:b,2,¢,d,y,c.ais obtained by dropping object a.

e (any P with) =P a,b,x,c,y,d, e is obtained by “truncating at ¢’
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Properties: Il

Our properties are defined as before, with the understanding that drop
strategies and truncation strategies for P; are defined wrt =%,

Example
Suppose P; is such that =%*: a,b, z, ¢,d,y, ¢ and w; = {z,y}. Then:
e (any P/ with) ~Pi:b,2,¢,d,y,c.ais obtained by dropping object a.

e (any P with) =P a,b,x,c,y,d, e is obtained by “truncating at ¢’

Proposition
TTC is not drop strategy-proof, but it is truncation-proof. J

23



Properties: Efficiency
@ The restriction to individual-good-based is substantive

e Consider the following problem (with endowments in red):

=

QU O >
Q0o o
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o Complete swap ({b,c},{a,d}) is the unique Pareto efficient +
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Properties: Efficiency
@ The restriction to individual-good-based is substantive

e Consider the following problem (with endowments in red):

=

QU O >
Q0o o

o Complete swap ({b,c},{a,d}) is the unique Pareto efficient +
individually rational allocation iff

{b,c} P {a,d} and {a,d} P>{b,c}.

= No individual-good-based rule is Pareto efficient + individually ra-
tional (Manjunath and Westkamp, 2024)

24



Properties: Efficiency

A rule ¢ is individual-good efficient (ig-efficient) if, for each profile P,
¢ (P) does not admit a Pareto-improving single-object exchange at P.?

%i,e., a cycle
C = (io,Ol,il,. .. ,ik_l,ok,ik = io)
such that, for all £ € {0,...,k — 1},

(i, (P)Uoet1) \oe Py iy (P)-
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Properties: Efficiency

A rule ¢ is individual-good efficient (ig-efficient) if, for each profile P,
¢ (P) does not admit a Pareto-improving single-object exchange at P.?

@ On the lexicographic domain, ig-efficiency = Pareto efficiency.

Proposition
TTC is not Pareto efficient, but it is ig-efficient. J

% e, a cycle
C = (io,()l,il,. .. ,ik_l,ok,ik = io)
such that, for all £ € {0,...,k — 1},

(i, (P)Uoet1) \oe Py iy (P)-

25



Two characterizations

Theorem

An individual-good-based rule satisfies

© balancedness,

Q ig-efficiency,

© the worst endowment lower bound, and
@ truncation-proofness

if and only if it is TTC.
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Two characterizations

Theorem

An individual-good-based rule satisfies

© balancedness,

Q ig-efficiency,

© the worst endowment lower bound, and
@ truncation-proofness
if and only if it is TTC.

Proof.

@ Let ¢ be an individual-good-based rule satisfying properties (1)-(4).
@ By our theorem for lexicographic prefs., ¢ agrees with ¢T7¢ on £V,
o Let P ¢ RN, and let P’ € LV be such that ="' =>"

@ Because ¢ and ¢ 7€ are individual-good-based,

(p(P)Z(,O(P,)ZQOTTC(P,)ZQOTTC(P). N 26



Two characterizations

Theorem

An individual-good-based rule satisfies

© balancedness,

Q ig-efficiency,

© the worst endowment lower bound, and
@ truncation-proofness

if and only if it is TTC.

Lemma

If an individual-good-based rule is balanced and individually rational,
then it satisfies the worst endowment lower bound.
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Two characterizations

Theorem

An individual-good-based rule satisfies

© balancedness,

Q ig-efficiency,

© the worst-endowmenttower-bound individual rationality, and
@ truncation-proofness

if and only if it is TTC.

Lemma

If an individual-good-based rule is balanced and individually rational,
then it satisfies the worst endowment lower bound.

26



Results: Incentives

Though it is manipulable, we can show that TTC is
@ maxmin strategy-proof; and

@ not obviously manipulable in the sense of Troyan and Morrill (2020)
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Results: Incentives

Though it is manipulable, we can show that TTC is
@ maxmin strategy-proof; and

@ not obviously manipulable in the sense of Troyan and Morrill (2020)

That is, for any problem P, any agent ¢, any u; that represents P;, and
any report P/,

minw; (o] (P, P-i)) = minw; (9] 7 (P, PLy))

—i -

max u; (QO;FTC (P, Pfi)) > MAX Uj (CP;FTC (P, P'_,L-)) :

—i )

27
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The Housing Market

@ The housing market is the special case in which each agent owns and
receives one object.
@ In this model:

» only TTC is Pareto efficient, individually rational, and strategy-proof
(Ma, 1994).

» all allocations are balanced.

» the worst endowment lower bound coincides with individual rationality.
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@ The housing market is the special case in which each agent owns and
receives one object.
@ In this model:
» only TTC is Pareto efficient, individually rational, and strategy-proof

(Ma, 1994).
» all allocations are balanced.
» the worst endowment lower bound coincides with individual rationality.

Only TTC is Pareto efficient, individually rational, and truncation-proof.

Corollary J
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The Housing Market

@ The housing market is the special case in which each agent owns and
receives one object.
@ In this model:

» only TTC is Pareto efficient, individually rational, and strategy-proof
(Ma, 1994).

» all allocations are balanced.

» the worst endowment lower bound coincides with individual rationality.

Corollary J

Only TTC is Pareto efficient, individually rational, and truncation-proof.

@ Though a planner with a stake in the outcome may consider relaxing
strategy-proofness to truncation-proofness ...

@ ... this relaxation does not give rise to any new rules.

29
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Alternative models and allocation rules

Domain Rule | ig-based ig-EFF ””:;a;fb” IR | Fareto e
responsive SD v v v X v v
STC v X v v X v
TTC v v v v X X
dichotomous Priority v v v v v v
trichotomous CIRP v v v v v v
combinatorial approx. CE X v v v X

Notes:
@ SD = Serial/sequential dictatorships (e.g., Ehlers and Klaus (2003); Hatfield (2009))
@ STC = Segmented Trading Cycles (P4pai, 2003)
@ Priority = Priority Mechanisms (Andersson et al., 2021)
@ CIRP = Component-wise IR Priority rules (Manjunath and Westkamp, 2021)
@ approx. CE = approximate competitive equilibrium (e.g., Echenique et al., 2023)

31
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Conditionally lexicographic preferences

@ Agent i's preferences P; are conditionally lexicographic if
for any bundle Y C O and any nonempty X C O\Y, there is an
object maxp, (X | Y) € X which is “lexicographically best among X
conditional on receiving Y."

» CLNR = L, where CL denotes the conditionally lexicographic domain.
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Conditionally lexicographic preferences

@ Agent i's preferences P; are conditionally lexicographic if
for any bundle Y C O and any nonempty X C O\Y, there is an
object maxp, (X | Y) € X which is “lexicographically best among X
conditional on receiving Y."

» CLNR = L, where CL denotes the conditionally lexicographic domain.

o Conditionally lexicographic preferences

> permit complementarity between objects.

» simple reporting language in terms of “preference trees.”

33



Properties

Our properties are the same, except for two modifications:

@ the worst endowment lower bound posits that, for each profile P and
each agent i, ¢; (P) does not contain objects that are “conditionally
worse” than all objects in her endowment (conditional on receiving

vi (P)).

o drop strategy-proofness posits that no agent can manipulate by
“dropping an object to the bottom of her lexicographic preference
tree.”
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A characterization

@ The extension of TTC to the conditionally lexicographic domain is
called Augmented Top Trading Cycles (ATTC) (Fujita et al., 2018)

> at step t, agent i points to maxp, (O | uﬁ_l), where O? is the set of

remaining objects and uffl is ¢'s assignment after step ¢ — 1.

» not individual-good-based as it uses information contained in preference
trees.
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A characterization

@ The extension of TTC to the conditionally lexicographic domain is
called Augmented Top Trading Cycles (ATTC) (Fujita et al., 2018)

> at step t, agent i points to maxp, (O | uf‘l), where O? is the set of

remaining objects and p! ™1 is i's assignment after step ¢ — 1.

K3
» not individual-good-based as it uses information contained in preference
trees.

Theorem

On the conditionally lexicographic domain, only ATTC satisfies
@ Pareto efficiency

@ balancedness

@ the worst endowment lower bound, and

@ drop strategy-proofness.
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Maximal domain results

@ It is known that ig-efficiency = Pareto efficiency on the lexicographic
domain (Aziz et al., 2019).

@ The conditionally lexicographic domain is similarly appealing.
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Maximal domain results

@ It is known that ig-efficiency = Pareto efficiency on the lexicographic
domain (Aziz et al., 2019).

@ The conditionally lexicographic domain is similarly appealing.

Proposition

@ ig-efficiency = Pareto efficiency on the conditionally lexicographic
domain.

@ CL is a maximal domain on which ig-efficiency = Pareto efficiency.
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Outline

@ Conclusion
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Conclusion

@ Our axiomatic analysis helps us to better understand the trade-offs
involved in multi-object reallocation.

@ Although it is manipulable, TTC performs surprisingly well according
to three criteria of interest: efficiency, individual rationality, and
incentives.

38



Thank you!
®©
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Proof Sketch. Step 1: Select a “minimal profile”

TTC

@ Toward contradiction, suppose ¢ # ¢ is Pareto efficient,

individually rational, and truncation-proof.

@ We select a profile P which is “minimal” according to some
criteria—for that we need some notation.

31f multiple cycles obtain, we select one with a fixed tie-break rule.
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Proof Sketch. Step 1: Select a “minimal profile”

TTC

@ Toward contradiction, suppose ¢ # ¢ is Pareto efficient,

individually rational, and truncation-proof.

@ We select a profile P which is “minimal” according to some
criteria—for that we need some notation.

@ For each “conflict profile” P € C = {P’ | (P') # o"T¢ (P')}, let

» C; (P) be the cycle executed at step ¢t of TTC (P).3
> 5(P) =) ,cn{o € O] oR;o}| be the size of P, where w; = {0;}.
» p(P)=min{t € N| ¢ (P) does not execute C; (P)}.

o Let t :== minpec p (P) be the "earliest point of departure between ¢
and " TC across all conflict profiles.”

@ Among all profiles in {P" € C | p(P’') =t}, let P be one that
minimizes s (P).

3If multiple cycles obtain, we select one with a fixed tie-break rule.



Step 2: Agents on C (P) retain their endowments

@ Because p (P) =t, ¢ (P) executes cycles C1 (P),...,Ci_1 (P) but
not Ct (P).

o Let C:=C,(P), say
C = (i0, 01,71, 02, - - -, ig—1, Ok, ik = Tp) -
@ Because ¢ (P) does not execute C, can assume WLOG that 5 (= i)

does not receive o;. Thus, @;';TC (P)=o01 P, ¢, (P)*

*By individual rationality, the number of agents on C' is k > 2.
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Step 2: Agents on C (P) retain their endowments

@ Because p (P) =t, ¢ (P) executes cycles C1 (P),...,Ci_1 (P) but
not Ct (P).

o Let C:=C,(P), say
C = (i0,01,91,02, - - -, if—1, Ok, i, = 10) -

@ Because ¢ (P) does not execute C, can assume WLOG that 5 (= i)

does not receive o;. Thus, @;';TC (P)=o01 P, ¢, (P)*

@ Thus, the profile P looks as follows (endowments are blue):

Pil Piz e Pik71 b
09 03 s O 01
op 02 - op—1 @i (P)

*By individual rationality, the number of agents on C' is k > 2.
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Step 2: Agents on C (P) retain their endowments

o Suppose ;, (P) # 0.
e By individual rationality, the profile P looks as follows:

P,

i P, - Pik—l Plk
09 03 tee OL 01
0'1 0'2 Ok.—l i '(P )

Ok
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Step 2: Agents on C (P) retain their endowments

@ Suppose @;, (P) # oy.

o Let P{k be the truncation of P;, at o;:

/
02 03 - Ok 01

Ok
op 02 -+ Og—1

P, (P)
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Step 2: Agents on C (P) retain their endowments

o Suppose ;, (P) # 0.
o Let P/ be the truncation of P;, at o;:

/
by, Py - Pik—1 sz
02 03 T Ok 01

Ok
op 02 -+ Og—1

P, (P)

o Letting P’ := (Pi’k, P_ik>, our choice of P implies that ¢ (P')
executes cycles Cy (P'),...,C¢y (P') (=C1 (P),...,C:(P)).

e Thus, ¢;, (P') =01 P;, @i, (P), a violation of truncation-proofness.
43



Step 2: Agents on C (P) retain their endowments

e Thus, ¢;, (P) = ok, which means that o P;, | vi,_, (P).

P, P e Pik—1 Plk
092 o3 - Ok o1
o1 02 o Py (P) Piy (P) = Ok
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Step 2: Agents on C (P) retain their endowments

e Thus, ¢;, (P) = ok, which means that o P;, | vi,_, (P).
o If p;,_, (P) # or_1, then the profile P looks as follows:

P, P, - P, P,

09y 03 - o, 01

o o2 o gu (P) wi(P) =0
Ok—1
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Step 2: Agents on C (P) retain their endowments

e Thus, ¢;, (P) = ok, which means that o P;, | vi,_, (P).
o If p;,_, (P) # or_1, then the profile P looks as follows:

P B, - B Py,

09y 03 - o, 01

o 0 ey (P) g (P) =0
Ok—1

o A similar argument shows that ¢;, , (P) = 0_1.
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Step 2: Agents on C (P) retain their endowments

e Thus, ¢;, (P) = ok, which means that o P;, | vi,_, (P).
o If p;,_, (P) # or_1, then the profile P looks as follows:

]:)il ]Dig Tt -Pik_l Rk
02 03 - Ok o1
op 02 - @i (P)=o0r1 @iy (P)=o

@ A similar argument shows that ¢;, | (P) = og_1.
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Step 2: Agents on C (P) retain their endowments

@ By a recursive argument, the profile P looks as follows:

Ijil Pi2 e Pik—l Plk
092 03 - Ok o1
o1 02 - @i, (P)=o0k-1 @i (P)=o
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Step 2: Agents on C (P) retain their endowments

@ By a recursive argument, the profile P looks as follows:

09 03 i Ok 01
01 @i (P)=o02 - @i (P)=o0r1 i (P)=o
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Step 2: Agents on C (P) retain their endowments

@ By a recursive argument, the profile P looks as follows:

Pil Piz T ]Dik—l Pik
09 03 . o 01
i (P)=o01 @i (P)=02 -+ i (P)=o0p1 @i (P)=o4
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Step 2: Agents on C (P) retain their endowments

@ By a recursive argument, the profile P looks as follows:

by P, T Py, P,
02 03 Ok 01
ei (P) =01 @i, (P)=02 -+ @iy, (P)=o0r1 i (P)=o0x
@ ... but then ¢ is not Pareto efficient! O
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