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Shift Exchange

A firm assigns shifts to its employees:

Mon Tue Wed Thu Fri

am Alice Carol Bob Carol Bob

pm Bob Alice Alice Alice Carol

Each employee has strict preferences over all possible “schedules.”

Reallocating the shifts could make all workers happier.
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Shift Exchange

A firm assigns shifts to its employees:

Mon Tue Wed Thu Fri

am Alice Carol Bob Carol Bob

pm Bob Alice Alice Alice Carol

Each employee has strict preferences over all possible “schedules.”

Reallocating the shifts could make all workers happier.

How, then, should trades be organized?
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Shift Exchange

Managerial Economics Tutorial Schedule
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Reallocation problems

Shift Exchange is an instance of multi-object reallocation without transfers:

a group of agents, each of whom
▶ initially owns a set of heterogeneous and indivisible objects.
▶ has strict preferences over bundles of objects.
▶ cares only about her own assigned bundle.

no restrictions on trade, i.e., all allocations are admissible.

a generalization of the “housing market” (Shapley and Scarf, 1974).

Other instances include:

course (re)allocation (Budish, 2011), tuition and student exchange
(Dur and Ünver, 2019; Andersson et al., 2021), living-donor kidney
exchange (Roth et al., 2005, 2004).
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Two challenges
Multi-object reallocation is a difficult problem:

(1) Hard for agents to know (much less communicate) their preferences

▶ as Roth (2015, p. 331) explains,
“a practical mechanism must simplify the language in which preferences
can be reported, and by doing so it will restrict which preferences can be
reported.”

▶ we focus on rules with simple reporting languages,
e.g., individual-good-based rules / “preference trees”

(2) Conflict among “ideal” properties
▶ Pareto efficiency, individual rationality, and strategy-proofness are

incompatible (Sönmez, 1999).
▶ we circumvent the incompatibility by relaxing Pareto efficiency and

strategy-proofness.
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Our contribution

Our main result is a characterization of TTC under “responsive”
preferences: it is the only individual-good-based rule satisfying
balancedness together with
▶ individual-good efficiency
▶ individual rationality, and
▶ truncation-proofness.

We also obtain new characterizations for the “lexicographic” and
“conditionally lexicographic” preference domains, as well as for the
housing market.

The upshot: TTC performs surprisingly well according to the three
criteria of interest.
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Related Literature

Related models of multi-unit reallocation
Altuntaş et al. (2023): lexicographic preferences
Biró et al. (2022): multi-unit housing market
Manjunath and Westkamp (2021): trichotomous preferences
Andersson et al. (2021): dichotomous preferences

Single-unit reallocation
Shapley and Scarf (1974), Ma (1994)
proof technology from Sethuraman (2016) and Ekici (2024)

We owe the largest debt to Altuntaş et al. (2023), who proved
TTC is drop strategy-proof
the first characterization of TTC
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Model: Preliminaries
A problem consists of:

a set N = {1, 2, . . . , n} of agents

a set O of heterogeneous and indivisible objects, with |O| ≥ n.

an initial allocation ω = (ωi)i∈N of objects to agents s.th.
▶ ωi ∩ ωj = ∅ when i ̸= j
▶

⋃
i∈N ωi = O

▶ ωi is agent i’s (nonempty) endowment

a profile P = (Pi)i∈N of strict preferences over bundles, 2O

▶ each Pi belongs to some domain P
▶ Ri is the associated “at least as good as” relation

N, O, ω are fixed, so we identify a problem with its profile P .

Thus, PN is the set of all problems.
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Model: Allocations and rules

An allocation µ = (µi)i∈N is a (re)assignment of objects to agents
s.th.
▶ µi ∩ µj = ∅ when i ̸= j
▶

⋃
i∈N µi = O

▶ µi is agent i’s (nonempty) assignment

A denotes the set of allocations

A rule (on P) is a systematic procedure for reallocating the objects,
i.e., a function φ : PN → A.
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Lexicographic Preferences

Agent i’s preferences Pi are lexicographic if
for any distinct bundles X and Y ,
▶ if i prefers the best object in X to that in Y , then X Pi Y ;
▶ if these objects are the same, then i compares the second-best object in

X to that in Y , and so on.
▶ if X ⊋ Y , then X Pi Y .

Let L denote the lexicographic domain.

Any Pi ∈ L is identified by its ranking over singletons
e.g., Pi : o1, o2, . . . , om means Pi ∈ L and o1 Pi o2 Pi · · · Pi om.
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Top Trading Cycles

For each profile P , the TTC rule selects the allocation φTTC (P ) obtained
as follows.

TTC (P )
For each step t ≥ 1,

Each agent points to her top-ranked remaining object.

Each object points to its owner.

All cycles are “executed.”

Remove all objects (but not the agents) involved in a cycle.

If no objects remain, stop and return the allocation.

12



Top Trading Cycles
Consider following problem (with endowments in red):

P1 P2 P3
c a a
a b b
d c c
b d d
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Top Trading Cycles
Consider following problem (with endowments in red):

P1 P2 P3
c a a
a b b
d c c
b d d

Step 1.

1 2 3

a b c d

Step 2.

1 2 3

a b c d

φTTC (P ) = ({c, d} , {a} , {b})
13



Properties: I

A rule φ satisfies

1 balancedness if, for each profile P and each agent i, |φi (P )| = |ωi|.

2 Pareto efficiency if, for each profile P , φ (P ) is Pareto efficient.

3 individual rationality if, for each profile P and each agent i,

φi (P ) Ri ωi.

4 the worst endowment lower bound if, for each profile P and each
agent i,

for all o ∈ φi (P ) , o Ri min
Pi

(ωi) .

▶ e.g., if Pi : a, b, x, c, d, y, e and ωi = {x, y},
then φi (P ) does not contain e.
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Properties: II (Incentives)
Given agent i’s true preference Pi, we say that

P ′
i is a drop strategy if it is obtained by dropping an object in O\ωi

to the bottom.

P ∗
i is a truncation strategy if it is obtained by dropping a “tail

subset” of O\ωi to the bottom.1

1i.e., a subset X such that if x ∈ X, y ∈ O\ωi, and x Pi y, then y ∈ X.
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Suppose Pi : a, b, x, c, d, y, e and ωi = {x, y}. Then:

P ′
i : b, x, c, d, y, e, a is obtained by dropping object a.

P ∗
i : a, b, x, c, y, d, e is obtained by “truncating at c”

i.e., dropping the set {o ∈ O\ωi | c Pi o} = {d, e}.

P ◦
i : a, x, y, b, c, d, e is obtained by “truncating at a”

i.e., dropping the set {o ∈ O\ωi | a Pi o} = {b, c, d, e}.
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Properties: II (Incentives)
Given agent i’s true preference Pi, we say that

P ′
i is a drop strategy if it is obtained by dropping an object in O\ωi

to the bottom.

P ∗
i is a truncation strategy if it is obtained by dropping a “tail

subset” of O\ωi to the bottom.1

A rule φ is
1 drop strategy-proof if no agent can manipulate via drop strategies.

2 truncation-proof if no agent can manipulate via truncation strategies.

3 strategy-proof if no agent can manipulate via any strategies.

1i.e., a subset X such that if x ∈ X, y ∈ O\ωi, and x Pi y, then y ∈ X.
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Properties of TTC

Proposition
On the lexicographic domain, TTC satisfies

1 Pareto efficiency,
2 balancedness,
3 individual rationality,
4 the worst endowment lower bound,
5 truncation-proofness,
6 drop strategy-proofness.

16



Two characterizations

Theorem
On the lexicographic domain, only TTC satisfies

balancedness,
Pareto efficiency,
the worst endowment lower bound, and
truncation-proofness.
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Independence of properties
Pareto efficiency: no-trade rule
worst endowment lower bound: serial dictatorships subject to
balancedness
balancedness: serial dictatorships subject to worst endowment lower
bound
truncation-proofness / drop strategy-proofness: straightforward.

Remark
On the lexicographic domain, there are other rules satisfying

balancedness,
Pareto efficiency,
individual rationality, and
truncation-proofness.
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Discussion: Properties

Balancedness: for each profile P and each agent i, |φi (P )| = |ωi|.

an inviolable constraint in many practical problems:
▶ in shift reallocation, it may be imposed for training reasons
▶ a requirement in student exchange programs (e.g., Erasmus, The

Tuition Exchange)

in the absence of constraints, it has some normative appeal:
▶ simplicity: balanced allocations can be obtained from single-object

exchanges.
▶ a mild form of equity

19



Discussion: Properties

The worst endowment lower bound: for each profile P and each agent i,
φi (P ) ⊆ {o ∈ O | o Ri minPi (ωi)} .

agrees with individual rationality for single-object problems:
▶ one possible extension to multi-object problems.

restricts the set of objects that can make up an agent’s bundle
▶ under individual rationality, an agent can be assigned any object if part

of a desirable bundle.

19



Discussion: Properties

Truncation-proofness: no agent can manipulate via truncation strategies.

coupled with worst endowment lower bound, it ensures agents cannot
benefit by “vetoing” objects they do not own.

truncations are compelling and simple to implement
▶ agents need only identify cutoff object
▶ very close to true preferences (they agree on O\ωi and on ωi).
▶ in many settings, truncations are “exhaustive” (Roth and Rothblum,

1999; Ehlers, 2008; Kojima and Pathak, 2009; Kojima, 2013).
▶ hence, a minimal requirement.
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Responsive preferences
Agent i’s preferences Pi are responsive if
for any bundle X and any y, z ∈ O\X,

(X ∪ y) Pi (X ∪ z) ⇐⇒ y Pi z.

Let R denote the responsive domain. Note that L ⊆ R.

Given Pi ∈ R, let ≻Pi denote the associated rank-order list over O.
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(X ∪ y) Pi (X ∪ z) ⇐⇒ y Pi z.

Let R denote the responsive domain. Note that L ⊆ R.

Given Pi ∈ R, let ≻Pi denote the associated rank-order list over O.

Remark.
There are many “responsive extensions” of a rank-order list ≻Pi .
For example, it is possible that

≻Pi=≻P ′
i : a, b, c, d

even though
{a, d} Pi {b, c} and {b, c} P ′

i {a, d} .
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Simple rules

We focus on rules that depend only on the orderings ≻P = (≻Pi)i∈N

associated with a profile P = (Pi)i∈N .

Formally, a rule φ is individual-good-based if

for all P, P ′ ∈ RN , ≻P =≻P ′ =⇒ φ (P ) = φ
(
P ′) .

One interpretation is that the rule elicits only ≻P , but agents
evaluate allocations based on their underlying preferences P .

This assumption is common—in theory and in practice.
▶ e.g., in the National Resident Matching Program, hospitals report only

their rank-order lists over individual doctors (Milgrom, 2009, 2011).

TTC is an individual-good-based rule.
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Properties: III

Our properties are defined as before, with the understanding that drop
strategies and truncation strategies for Pi are defined wrt ≻Pi .

Example
Suppose Pi is such that ≻Pi : a, b, x, c, d, y, e and ωi = {x, y}. Then:

(any P ′
i with) ≻P ′

i : b, x, c, d, y, e, a is obtained by dropping object a.

(any P ∗
i with) ≻P ∗

i : a, b, x, c, y, d, e is obtained by “truncating at c”.

Proposition
TTC is not drop strategy-proof, but it is truncation-proof.
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Properties: Efficiency
The restriction to individual-good-based is substantive

Consider the following problem (with endowments in red):

≻P1 ≻P2

a a
b b
c c
d d

Complete swap ({b, c} , {a, d}) is the unique Pareto efficient +
individually rational allocation iff

{b, c} P1 {a, d} and {a, d} P2 {b, c} .

=⇒ No individual-good-based rule is Pareto efficient + individually ra-
tional (Manjunath and Westkamp, 2024)
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Properties: Efficiency

A rule φ is individual-good efficient (ig-efficient) if, for each profile P ,
φ (P ) does not admit a Pareto-improving single-object exchange at P .2

On the lexicographic domain, ig-efficiency = Pareto efficiency.

Proposition
TTC is not Pareto efficient, but it is ig-efficient.

2i,.e., a cycle
C = (i0, o1, i1, . . . , ik−1, ok, ik = i0)

such that, for all ℓ ∈ {0, . . . , k − 1},

(φiℓ (P ) ∪ oℓ+1) \oℓ Piℓ φiℓ (P ) .
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Results: Incentives

Though it is manipulable, we can show that TTC is

maxmin strategy-proof; and

not obviously manipulable in the sense of Troyan and Morrill (2020)

That is, for any problem P , any agent i, any ui that represents Pi, and
any report P ′

i ,

min
P−i

ui

(
φTTC

i (Pi, P−i)
)

≥ min
P ′

−i

ui

(
φTTC

i

(
P ′

i , P ′
−i

))
max
P−i

ui

(
φTTC

i (Pi, P−i)
)

≥ max
P ′

−i

ui

(
φTTC

i

(
P ′

i , P ′
−i

))
.
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The Housing Market

The housing market is the special case in which each agent owns and
receives one object.
In this model:
▶ only TTC is Pareto efficient, individually rational, and strategy-proof

(Ma, 1994).
▶ all allocations are balanced.
▶ the worst endowment lower bound coincides with individual rationality.

Corollary
Only TTC is Pareto efficient, individually rational, and truncation-proof.

Though a planner with a stake in the outcome may consider relaxing
strategy-proofness to truncation-proofness ...
... this relaxation does not give rise to any new rules.

Proof sketch
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Alternative models and allocation rules

Domain Rule ig-based ig-EFF truncation
proof IR Pareto

efficient
strategy

proof

responsive SD ✓ ✓ ✓ ✗ ✓ ✓

STC ✓ ✗ ✓ ✓ ✗ ✓

TTC ✓ ✓ ✓ ✓ ✗ ✗

dichotomous Priority ✓ ✓ ✓ ✓ ✓ ✓

trichotomous CIRP ✓ ✓ ✓ ✓ ✓ ✓

combinatorial approx. CE ✗ ✓ – ✓ ✓ ✗

Notes:
SD = Serial/sequential dictatorships (e.g., Ehlers and Klaus (2003); Hatfield (2009))
STC = Segmented Trading Cycles (Pápai, 2003)
Priority = Priority Mechanisms (Andersson et al., 2021)
CIRP = Component-wise IR Priority rules (Manjunath and Westkamp, 2021)
approx. CE = approximate competitive equilibrium (e.g., Echenique et al., 2023)
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Conditionally lexicographic preferences
Agent i’s preferences Pi are conditionally lexicographic if
for any bundle Y ⊊ O and any nonempty X ⊆ O\Y , there is an
object maxPi (X | Y ) ∈ X which is “lexicographically best among X
conditional on receiving Y .”
▶ CL ∩ R = L, where CL denotes the conditionally lexicographic domain.

Conditionally lexicographic preferences
▶ permit complementarity between objects.
▶ simple reporting language in terms of “preference trees.”

c¬cb¬b

a¬a

c

c d d

a

d c d

b

b

bd c d b

¬c c ¬b b d¬d¬d d
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Properties

Our properties are the same, except for two modifications:

the worst endowment lower bound posits that, for each profile P and
each agent i, φi (P ) does not contain objects that are “conditionally
worse” than all objects in her endowment (conditional on receiving
φi (P )).

drop strategy-proofness posits that no agent can manipulate by
“dropping an object to the bottom of her lexicographic preference
tree.”
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A characterization

The extension of TTC to the conditionally lexicographic domain is
called Augmented Top Trading Cycles (ATTC) (Fujita et al., 2018)
▶ at step t, agent i points to maxPi

(
Ot | µt−1

i

)
, where Ot is the set of

remaining objects and µt−1
i is i’s assignment after step t − 1.

▶ not individual-good-based as it uses information contained in preference
trees.

Theorem
On the conditionally lexicographic domain, only ATTC satisfies

Pareto efficiency
balancedness
the worst endowment lower bound, and
drop strategy-proofness.
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Maximal domain results

It is known that ig-efficiency = Pareto efficiency on the lexicographic
domain (Aziz et al., 2019).

The conditionally lexicographic domain is similarly appealing.

Proposition
1 ig-efficiency = Pareto efficiency on the conditionally lexicographic

domain.

2 CL is a maximal domain on which ig-efficiency = Pareto efficiency.
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Conclusion

Our axiomatic analysis helps us to better understand the trade-offs
involved in multi-object reallocation.

Although it is manipulable, TTC performs surprisingly well according
to three criteria of interest: efficiency, individual rationality, and
incentives.
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Thank you!
,
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Proof Sketch. Step 1: Select a “minimal profile”

Toward contradiction, suppose φ ̸= φTTC is Pareto efficient,
individually rational, and truncation-proof.

We select a profile P which is “minimal” according to some
criteria—for that we need some notation.

For each “conflict profile” P ∈ C :=
{

P ′ | φ (P ′) ̸= φTTC (P ′)
}

, let
▶ Ct (P ) be the cycle executed at step t of TTC (P ).3
▶ s (P ) =

∑
i∈N |{o ∈ O | o Ri oi}| be the size of P , where ωi = {oi}.

▶ ρ (P ) = min {t ∈ N | φ (P ) does not execute Ct (P )}.

Let t := minP ∈C ρ (P ) be the “earliest point of departure between φ
and φTTC across all conflict profiles.”

Among all profiles in {P ′ ∈ C | ρ (P ′) = t}, let P be one that
minimizes s (P ).

3If multiple cycles obtain, we select one with a fixed tie-break rule.
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Step 2: Agents on Ct (P ) retain their endowments
Because ρ (P ) = t, φ (P ) executes cycles C1 (P ) , . . . , Ct−1 (P ) but
not Ct (P ).
Let C := Ct (P ), say

C = (i0, o1, i1, o2, . . . , ik−1, ok, ik = i0) .

Because φ (P ) does not execute C, can assume WLOG that ik (= i0)
does not receive o1. Thus, φTTC

ik
(P ) = o1 Pik

φik
(P ).4

Thus, the profile P looks as follows (endowments are blue):

Pi1 Pi2 · · · Pik−1 Pik

...
... . . . ...

...
o2 o3 · · · ok o1
...

... . . . ...
...

o1 o2 · · · ok−1 φik
(P )

4By individual rationality, the number of agents on C is k ≥ 2.
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Step 2: Agents on Ct (P ) retain their endowments
Suppose φik

(P ) ̸= ok.
By individual rationality, the profile P looks as follows:

P ′
ik

Pi1 Pi2 · · · Pik−1 Pik

...
... . . . ...

...
o2 o3 · · · ok o1
...

... . . . ...
...

o1 o2 · · · ok−1 φik
(P )

...
... . . . ...

...
ok
...
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be the truncation of Pik

at o1:

Pi1 Pi2 · · · Pik−1 P ′
ik...

... . . . ...
...

o2 o3 · · · ok o1
...

... . . . ... ok

o1 o2 · · · ok−1
...

...
... . . . ... φik

(P )
...

Letting P ′ :=
(
P ′

ik
, P−ik

)
, our choice of P implies that φ (P ′)

executes cycles C1 (P ′) , . . . , Ct (P ′) (= C1 (P ) , . . . , Ct (P )).
Thus, φik

(P ′) = o1 Pik
φik

(P ), a violation of truncation-proofness.
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Step 2: Agents on Ct (P ) retain their endowments
Thus, φik
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...
... . . . ...

...
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A similar argument shows that φik−1 (P ) = ok−1.
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Step 2: Agents on Ct (P ) retain their endowments
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... but then φ is not Pareto efficient! Back
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