Some Characterizations of TTC in Multi-Object Reallocation Problems

Jacob Coreno¹ & Di Feng²

¹University of Melbourne ²Dongbei University of Finance and Economics

> Deakin University September, 2024

Shift Exchange

• A firm assigns shifts to its employees:

- Each employee has strict preferences over all possible "schedules."
- Reallocating the shifts could make all workers happier.

Shift Exchange

• A firm assigns shifts to its employees:

- Each employee has strict preferences over all possible "schedules."
- Reallocating the shifts could make all workers happier.
- How, then, should trades be organized?

Shift Exchange

Managerial Economics Tutorial Schedule

Reallocation problems

Shift Exchange is an instance of multi-object reallocation without transfers:

- a group of agents, each of whom
	- ▶ initially owns a set of *heterogeneous* and *indivisible* objects.
	- ▶ has strict preferences over bundles of objects.
	- \triangleright cares only about her own assigned bundle.
- no restrictions on trade, i.e., all allocations are admissible.
- a generalization of the "housing market" [\(Shapley and Scarf, 1974\)](#page-82-0).

Reallocation problems

Shift Exchange is an instance of multi-object reallocation without transfers:

- a group of agents, each of whom
	- ▶ initially owns a set of *heterogeneous* and *indivisible* objects.
	- ▶ has strict preferences over bundles of objects.
	- \triangleright cares only about her own assigned bundle.
- no restrictions on trade, i.e., all allocations are admissible.
- a generalization of the "housing market" [\(Shapley and Scarf, 1974\)](#page-82-0).

Other instances include:

• course (re)allocation [\(Budish, 2011\)](#page-82-1), tuition and student exchange [\(Dur and Ünver, 2019;](#page-82-2) [Andersson et al., 2021\)](#page-82-3), living-donor kidney exchange [\(Roth et al., 2005,](#page-82-4) [2004\)](#page-82-5).

Multi-object reallocation is a difficult problem:

(1) Hard for agents to know (much less communicate) their preferences

Multi-object reallocation is a difficult problem:

(1) Hard for agents to know (much less communicate) their preferences

 \triangleright as [Roth \(2015,](#page-82-6) p. 331) explains,

"a practical mechanism must simplify the language in which preferences can be reported, and by doing so it will restrict which preferences can be reported."

Multi-object reallocation is a difficult problem:

(1) Hard for agents to know (much less communicate) their preferences

 \triangleright as [Roth \(2015,](#page-82-6) p. 331) explains,

"a practical mechanism must simplify the language in which preferences can be reported, and by doing so it will restrict which preferences can be reported."

 \triangleright we focus on rules with simple reporting languages, e.g., individual-good-based rules / "preference trees"

Multi-object reallocation is a difficult problem:

(1) Hard for agents to know (much less communicate) their preferences

 \triangleright as [Roth \(2015,](#page-82-6) p. 331) explains,

"a practical mechanism must simplify the language in which preferences can be reported, and by doing so it will restrict which preferences can be reported."

 \triangleright we focus on rules with simple reporting languages, e.g., individual-good-based rules / "preference trees"

(2) Conflict among "ideal" properties

▶ Pareto efficiency, individual rationality, and strategy-proofness are incompatible [\(Sönmez, 1999\)](#page-82-7).

Multi-object reallocation is a difficult problem:

(1) Hard for agents to know (much less communicate) their preferences

 \triangleright as [Roth \(2015,](#page-82-6) p. 331) explains,

"a practical mechanism must simplify the language in which preferences can be reported, and by doing so it will restrict which preferences can be reported."

 \triangleright we focus on rules with simple reporting languages, e.g., individual-good-based rules / "preference trees"

(2) Conflict among "ideal" properties

- ▶ Pareto efficiency, individual rationality, and strategy-proofness are incompatible [\(Sönmez, 1999\)](#page-82-7).
- \triangleright we circumvent the incompatibility by relaxing Pareto efficiency and strategy-proofness.

Our contribution

- Our main result is a characterization of TTC under "responsive" preferences: it is the only individual-good-based rule satisfying balancedness together with
	- ▶ individual-good efficiency
	- ▶ individual rationality, and
	- ▶ truncation-proofness.

Our contribution

- Our main result is a characterization of TTC under "responsive" preferences: it is the only individual-good-based rule satisfying balancedness together with
	- ▶ individual-good efficiency
	- \blacktriangleright individual rationality, and
	- ▶ truncation-proofness.
- We also obtain new characterizations for the "lexicographic" and "conditionally lexicographic" preference domains, as well as for the housing market.

Our contribution

- Our main result is a characterization of TTC under "responsive" preferences: it is the only individual-good-based rule satisfying balancedness together with
	- ▶ individual-good efficiency
	- \blacktriangleright individual rationality, and
	- ▶ truncation-proofness.
- We also obtain new characterizations for the "lexicographic" and "conditionally lexicographic" preference domains, as well as for the housing market.
- The upshot: TTC performs surprisingly well according to the three criteria of interest.

Related Literature

Related models of multi-unit reallocation

- [Altuntaş et al. \(2023\)](#page-82-8): lexicographic preferences
- [Biró et al. \(2022\)](#page-82-9): multi-unit housing market
- [Manjunath and Westkamp \(2021\)](#page-82-10): trichotomous preferences
- [Andersson et al. \(2021\)](#page-82-3): dichotomous preferences
- Single-unit reallocation
	- [Shapley and Scarf \(1974\)](#page-82-0), [Ma \(1994\)](#page-82-11)
	- proof technology from [Sethuraman \(2016\)](#page-82-12) and [Ekici \(2024\)](#page-82-13)

Related Literature

Related models of multi-unit reallocation

- [Altuntaş et al. \(2023\)](#page-82-8): lexicographic preferences
- [Biró et al. \(2022\)](#page-82-9): multi-unit housing market
- [Manjunath and Westkamp \(2021\)](#page-82-10): trichotomous preferences
- [Andersson et al. \(2021\)](#page-82-3): dichotomous preferences

Single-unit reallocation

- [Shapley and Scarf \(1974\)](#page-82-0), [Ma \(1994\)](#page-82-11)
- **•** proof technology from [Sethuraman \(2016\)](#page-82-12) and [Ekici \(2024\)](#page-82-13)

We owe the largest debt to Altuntas et al. (2023), who proved

- TTC is drop strategy-proof
- **o** the first characterization of TTC

Outline

1 [Setup](#page-16-0)

- 2 [Lexicographic preferences](#page-22-0)
- [Responsive preferences](#page-45-0)
- **[The Housing Market](#page-65-0)**
- [Related Literature](#page-69-0)
- 6 [Conditionally lexicographic preferences](#page-71-0)

[Conclusion](#page-79-0)

Model: Preliminaries

A problem consists of:

- a set $N = \{1, 2, \ldots, n\}$ of agents
- a set *O* of *heterogeneous* and *indivisible* objects, with $|O| > n$.
- an initial allocation $\omega = (\omega_i)_{i \in N}$ of objects to agents s.th.

$$
\blacktriangleright \omega_i \cap \omega_j = \emptyset \text{ when } i \neq j
$$

- \blacktriangleright **U**_{*i*∈*N*} ω_i = *O*
- \blacktriangleright ω_i is agent i 's (nonempty) endowment
- a profile $P = \left(P_i\right)_{i \in N}$ of strict preferences over bundles, 2^O
	- \blacktriangleright each P_i belongs to some domain P
	- \blacktriangleright R_i is the associated "*at least as good as*" relation

Model: Preliminaries

A problem consists of:

- a set $N = \{1, 2, \ldots, n\}$ of agents
- a set *O* of *heterogeneous* and *indivisible* objects, with $|O| > n$.
- an initial allocation $\omega = (\omega_i)_{i \in N}$ of objects to agents s.th.

$$
\blacktriangleright \omega_i \cap \omega_j = \emptyset \text{ when } i \neq j
$$

- \blacktriangleright **U**_{*i*∈*N*} ω_i = *O*
- \blacktriangleright ω_i is agent i 's (nonempty) endowment
- a profile $P = \left(P_i\right)_{i \in N}$ of strict preferences over bundles, 2^O
	- \blacktriangleright each P_i belongs to some domain P
	- \blacktriangleright R_i is the associated "*at least as good as*" relation

 N, O, ω are fixed, so we identify a problem with its profile P .

Thus, \mathcal{P}^N is the set of all problems.

Model: Allocations and rules

 A n allocation $\mu = (\mu_i)_{i \in N}$ is a (re)assignment of objects to agents s.th.

$$
\blacktriangleright \mu_i \cap \mu_j = \emptyset \text{ when } i \neq j
$$

$$
\blacktriangleright \bigcup_{i \in N} \mu_i = O
$$

 \blacktriangleright μ_i is agent i 's (nonempty) assignment

Model: Allocations and rules

- A n allocation $\mu = (\mu_i)_{i \in N}$ is a (re)assignment of objects to agents s.th.
	- ▶ $\mu_i \cap \mu_j = \emptyset$ when $i \neq j$
	- \blacktriangleright $\bigcup_{i \in N} \mu_i = O$
	- \blacktriangleright μ_i is agent i 's (nonempty) assignment
- \bullet $\mathcal A$ denotes the set of allocations

Model: Allocations and rules

- A n allocation $\mu = (\mu_i)_{i \in N}$ is a (re)assignment of objects to agents s.th.
	- \blacktriangleright $\mu_i \cap \mu_j = \emptyset$ when $i \neq j$
	- \blacktriangleright $\bigcup_{i \in N} \mu_i = O$
	- \blacktriangleright μ_i is agent i 's (nonempty) assignment
- \bullet $\mathcal A$ denotes the set of allocations
- A rule (on P) is a systematic procedure for reallocating the objects, i.e., a function $\varphi: \mathcal{P}^N \to \mathcal{A}$.

Outline

[Setup](#page-16-0)

- 2 [Lexicographic preferences](#page-22-0)
- [Responsive preferences](#page-45-0)
- **[The Housing Market](#page-65-0)**
- [Related Literature](#page-69-0)
- 6 [Conditionally lexicographic preferences](#page-71-0)

[Conclusion](#page-79-0)

Lexicographic Preferences

- Agent *i*'s preferences *Pⁱ* are lexicographic if for any distinct bundles *X* and *Y* ,
	- \triangleright if *i* prefers the best object in *X* to that in *Y*, then *X P_iY*;
	- \triangleright if these objects are the same, then *i* compares the second-best object in *X* to that in *Y* , and so on.
	- ▶ if $X \supseteq Y$, then $X P_i Y$.
- Let $\mathcal L$ denote the lexicographic domain.
- Any $P_i \in \mathcal{L}$ is identified by its ranking over singletons e.g., $P_i: o_1, o_2, \ldots, o_m$ means $P_i \in \mathcal{L}$ and o_1 P_i o_2 P_i \cdots P_i o_m .

For each profile P , the TTC rule selects the allocation $\varphi^{\textsf{TTC}}\left(P\right)$ obtained as follows.

$TTC(P)$

For each step $t \geq 1$.

- **•** Each agent points to her top-ranked remaining object.
- Each object points to its owner.
- All cycles are "executed."
- Remove all objects (but not the agents) involved in a cycle.
- **•** If no objects remain, stop and return the allocation.

Consider following problem (with endowments in red):

Consider following problem (with endowments in red):

Consider following problem (with endowments in red):

 $\varphi^{\text{TTC}}(P) = (\{c, d\}, \{a\}, \{b\})$

A rule *φ* satisfies

A rule *φ* satisfies

 \bullet balancedness if, for each profile P and each agent i , $|\varphi_{i}\left(P\right)|=|\omega_{i}|.$

A rule *φ* satisfies

- \bullet balancedness if, for each profile P and each agent i , $|\varphi_{i}\left(P\right)|=|\omega_{i}|.$
- 2 Pareto efficiency if, for each profile P , $\varphi(P)$ is Pareto efficient.

A rule *φ* satisfies

- \bullet balancedness if, for each profile P and each agent i , $|\varphi_{i}\left(P\right)|=|\omega_{i}|.$
- 2 Pareto efficiency if, for each profile P , $\varphi(P)$ is Pareto efficient.
- ³ individual rationality if, for each profile *P* and each agent *i*,

 $\varphi_i(P)$ $R_i \omega_i$.

A rule *φ* satisfies

- \bullet balancedness if, for each profile P and each agent i , $|\varphi_{i}\left(P\right)|=|\omega_{i}|.$
- 2 Pareto efficiency if, for each profile P , $\varphi(P)$ is Pareto efficient.
- ³ individual rationality if, for each profile *P* and each agent *i*,

$$
\varphi_i\left(P\right)R_i\,\omega_i.
$$

⁴ the worst endowment lower bound if, for each profile *P* and each agent *i*,

for all
$$
o \in \varphi_i(P)
$$
, $o R_i \min_{P_i} (\omega_i)$.

▶ e.g., if $P_i: a, b, x, c, d, y, e$ and $\omega_i = \{x, y\}$, then $\varphi_i(P)$ does not contain *e*.

Properties: II (Incentives)

Given agent i 's true preference P_i , we say that

- P'_i is a drop strategy if it is obtained by dropping an object in $O\backslash\omega_i$ to the bottom.
- P_i^* is a truncation strategy if it is obtained by dropping a "tail subset" of $O \backslash \omega_i$ to the bottom.¹

 1 i.e., a subset X such that if $x \in X$, $y \in O\backslash \omega_i$, and $x \ P_i \ y$, then $y \in X.$

Properties: II (Incentives)

Given agent i 's true preference P_i , we say that

- P'_i is a drop strategy if it is obtained by dropping an object in $O\backslash\omega_i$ to the bottom.
- P_i^* is a truncation strategy if it is obtained by dropping a "tail subset" of $O \backslash \omega_i$ to the bottom.¹

Example

 $\mathsf{Suppose}\,\, P_i: a,b,x,c,d,y,e$ and $\omega_i=\{x,y\}.$ Then:

- $P'_i : b, x, c, d, y, e, a$ is obtained by dropping object a .
- $P_i^* : a, b, x, c, y, d, e$ is obtained by "truncating at c " i.e., dropping the set $\{o \in O \backslash \omega_i \mid c \, P_i \, o\} = \{d, e\}.$
- $P_i^{\circ} : a, x, y, b, c, d, e$ is obtained by "truncating at a " i.e., dropping the set $\{o \in O \backslash \omega_i \mid a \ P_i \ o\} = \{b, c, d, e\}.$

 1 i.e., a subset X such that if $x \in X$, $y \in O\backslash \omega_i$, and $x \ P_i \ y$, then $y \in X.$

Properties: II (Incentives)

Given agent i 's true preference P_i , we say that

- P'_i is a drop strategy if it is obtained by dropping an object in $O\backslash\omega_i$ to the bottom.
- P_i^* is a truncation strategy if it is obtained by dropping a "tail subset" of $O \backslash \omega_i$ to the bottom.¹

A rule *φ* is

- **1** drop strategy-proof if no agent can manipulate via *drop strategies*.
- **2** truncation-proof if no agent can manipulate via truncation strategies.
- **3** strategy-proof if no agent can manipulate via any strategies.

 1 i.e., a subset X such that if $x \in X$, $y \in O\backslash \omega_i$, and $x \ P_i \ y$, then $y \in X.$
Properties of TTC

Proposition

On the lexicographic domain, TTC satisfies

- **4** Pareto efficiency,
- 2 balancedness.
- **3** individual rationality,
- ⁴ the worst endowment lower bound,
- **⁵** truncation-proofness,
- **⁶** drop strategy-proofness.

Theorem

On the lexicographic domain, only TTC satisfies

- **•** balancedness.
- Pareto efficiency,
- the worst endowment lower bound, and
- o truncation-proofness.

Theorem

On the lexicographic domain, only TTC satisfies

- **•** balancedness.
- Pareto efficiency,
- the worst endowment lower bound, and
- o truncation-proofness.

Lemma

If a rule satisfies drop strategy-proofness and the worst endowment lower bound, then it is truncation-proof.

Theorem

On the lexicographic domain, only TTC satisfies

- **•** balancedness.
- Pareto efficiency,
- the worst endowment lower bound, and
- **truncation-proofness drop strategy-proofness.**

Lemma

If a rule satisfies drop strategy-proofness and the worst endowment lower bound, then it is truncation-proof.

Independence of properties

- Pareto efficiency: no-trade rule
- worst endowment lower bound: serial dictatorships subject to balancedness
- balancedness: serial dictatorships subject to worst endowment lower bound
- truncation-proofness / drop strategy-proofness: straightforward.

Independence of properties

- Pareto efficiency: no-trade rule
- worst endowment lower bound: serial dictatorships subject to balancedness
- balancedness: serial dictatorships subject to worst endowment lower bound
- truncation-proofness / drop strategy-proofness: straightforward.

Remark

On the lexicographic domain, there are other rules satisfying

- **o** balancedness.
- Pareto efficiency,
- o individual rationality, and
- o truncation-proofness.

Discussion: Properties

Balancedness: for each profile P and each agent i , $|\varphi_i(P)| = |\omega_i|$.

- an inviolable constraint in many practical problems:
	- \triangleright in shift reallocation, it may be imposed for training reasons
	- \triangleright a requirement in student exchange programs (e.g., Erasmus, The Tuition Exchange)
- in the absence of constraints, it has some normative appeal:
	- \triangleright simplicity: balanced allocations can be obtained from single-object exchanges.
	- \blacktriangleright a mild form of equity

Discussion: Properties

The worst endowment lower bound: for each profile *P* and each agent *i*, $\varphi_i(P) \subseteq \{o \in O \mid o R_i \min_{P_i} (\omega_i) \}.$

- agrees with individual rationality for single-object problems:
	- ▶ one possible extension to multi-object problems.
- **•** restricts the set of objects that can make up an agent's bundle
	- \triangleright under individual rationality, an agent can be assigned any object if part of a desirable bundle.

Discussion: Properties

Truncation-proofness: no agent can manipulate via truncation strategies.

- coupled with worst endowment lower bound, it ensures agents cannot benefit by "vetoing" objects they do not own.
- **•** truncations are compelling and simple to implement
	- \triangleright agents need only identify cutoff object
	- ▶ very close to true preferences (they agree on $O\setminus\omega_i$ and on ω_i).
	- \triangleright in many settings, truncations are "exhaustive" [\(Roth and Rothblum,](#page-82-0) [1999;](#page-82-0) [Ehlers, 2008;](#page-82-1) [Kojima and Pathak, 2009;](#page-82-2) [Kojima, 2013\)](#page-82-3).
	- \blacktriangleright hence, a minimal requirement.

Outline

[Setup](#page-16-0)

- 2 [Lexicographic preferences](#page-22-0)
- 3 [Responsive preferences](#page-45-0)
- **[The Housing Market](#page-65-0)**
- [Related Literature](#page-69-0)
- 6 [Conditionally lexicographic preferences](#page-71-0)

[Conclusion](#page-79-0)

Responsive preferences

- Agent *i*'s preferences *Pⁱ* are responsive if for any bundle *X* and any $y, z \in O\backslash X$, $(X \cup y) P_i (X \cup z) \iff y P_i z.$
- Let $\mathcal R$ denote the responsive domain. Note that $\mathcal L \subseteq \mathcal R$.
- **•** Given $P_i \in \mathcal{R}$, let \succ^{P_i} denote the associated rank-order list over *O*.

Responsive preferences

- Agent *i*'s preferences *Pⁱ* are responsive if for any bundle *X* and any $y, z \in O\backslash X$, $(X \cup y) P_i (X \cup z) \iff y P_i z.$
- Let $\mathcal R$ denote the responsive domain. Note that $\mathcal L \subseteq \mathcal R$.
- **•** Given $P_i \in \mathcal{R}$, let \succ^{P_i} denote the associated rank-order list over *O*.

Remark.

There are many "responsive extensions" of a rank-order list \succ^{P_i} . For example, it is possible that

$$
\succ^{P_i}=\succ^{P'_i}: a, b, c, d
$$

even though

$$
\{a,d\} \; P_i \; \{b,c\} \; \; \text{and} \; \; \{b,c\} \; P'_i \; \{a,d\} \; .
$$

Simple rules

- \bullet We focus on rules that depend only on the orderings $\succ^P=(\succ^{P_i})_{i\in N}$ associated with a profile $P = (P_i)_{i \in N}$.
- Formally, a rule *φ* is individual-good-based if

for all
$$
P, P' \in \mathcal{R}^N
$$
, $\succ^P \Rightarrow^P' \implies \varphi(P) = \varphi(P')$.

Simple rules

- We focus on rules that depend only on the orderings $\succ^P = (\succ^P_i)_{i \in N}$ associated with a profile $P = (P_i)_{i \in N}$.
- **•** Formally, a rule φ is individual-good-based if

$$
\text{for all } P, P' \in \mathcal{R}^N, \ \succ^P \Rightarrow \succ^{P'} \implies \varphi(P) = \varphi(P') \,.
$$

- \bullet One interpretation is that the rule elicits only \succ ^{*P*}, but agents evaluate allocations based on their underlying preferences *P*.
- This assumption is common—in theory and in practice.
	- ▶ e.g., in the National Resident Matching Program, hospitals report only their rank-order lists over individual doctors [\(Milgrom, 2009,](#page-82-4) [2011\)](#page-82-5).

Simple rules

- We focus on rules that depend only on the orderings $\succ^P = (\succ^P_i)_{i \in N}$ associated with a profile $P = (P_i)_{i \in N}$.
- Formally, a rule *φ* is individual-good-based if

$$
\text{for all } P, P' \in \mathcal{R}^N, \ \ \succ^P = \succ^{P'} \implies \varphi(P) = \varphi(P') \,.
$$

- \bullet One interpretation is that the rule elicits only \succ ^{*P*}, but agents evaluate allocations based on their underlying preferences *P*.
- This assumption is common—in theory and in practice.
	- ▶ e.g., in the National Resident Matching Program, hospitals report only their rank-order lists over individual doctors [\(Milgrom, 2009,](#page-82-4) [2011\)](#page-82-5).
- TTC is an individual-good-based rule.

Properties: III

Our properties are defined as before, with the understanding that *drop* strategies and *truncation strategies* for P_i are defined wrt \succ^{P_i} .

Example

 $\mathsf{Suppose}\,\, P_i \,\,\mathsf{is \,\, such \,\, that}\, \succ^{P_i}\colon a,b,x,c,d,y,e \,\,\mathsf{and}\,\,\omega_i=\{x,y\}.$ Then:

- $(\textsf{any}\; P'_i \textsf{ with}) \succ^{P'_i}: b, x, c, d, y, e, a \textsf{ is obtained by dropping object } a.$
- $(\textsf{any}\; P_i^*\; \textsf{with}) \succ^{P_i^*}\colon a, b, x, c, y, d, e \text{ is obtained by "truncating at c".}$

Properties: III

Our properties are defined as before, with the understanding that *drop* strategies and *truncation strategies* for P_i are defined wrt \succ^{P_i} .

Example

 $\mathsf{Suppose}\,\, P_i \,\,\mathsf{is \,\, such \,\, that}\, \succ^{P_i}\colon a,b,x,c,d,y,e \,\,\mathsf{and}\,\,\omega_i=\{x,y\}.$ Then:

- $(\textsf{any}\; P'_i \textsf{ with}) \succ^{P'_i}: b, x, c, d, y, e, a \textsf{ is obtained by dropping object } a.$
- $(\textsf{any}\; P_i^*\; \textsf{with}) \succ^{P_i^*}\colon a, b, x, c, y, d, e \text{ is obtained by "truncating at c".}$

Proposition

TTC is not drop strategy-proof, but it is truncation-proof.

- The restriction to individual-good-based is substantive
- Consider the following problem (with endowments in red):

- The restriction to individual-good-based is substantive
- Consider the following problem (with endowments in red):

• Complete swap $({b, c}, {a, d})$ is the unique Pareto efficient + individually rational allocation iff

 ${b, c} P_1 {a, d} \text{ and } {a, d} P_2 {b, c}.$

- The restriction to individual-good-based is substantive
- Consider the following problem (with endowments in red):

• Complete swap $(\{b, c\}, \{a, d\})$ is the unique Pareto efficient $+$ individually rational allocation iff

 ${b, c} P_1 {a, d} \text{ and } {a, d} P_2 {b, c}.$

 \implies No individual-good-based rule is Pareto efficient $+$ individually rational (Manjunath and Westkamp, 2024)

A rule *φ* is individual-good efficient (ig-efficient) if, for each profile *P*, $\varphi\left(P\right)$ does not admit a Pareto-improving single-object exchange at $P.^2$

²i,.e., a cycle $C = (i_0, o_1, i_1, \ldots, i_{k-1}, o_k, i_k = i_0)$ such that, for all $\ell \in \{0, \ldots, k-1\}$, $(\varphi_{i_{\ell}}(P) \cup o_{\ell+1}) \setminus o_{\ell} P_{i_{\ell}} \varphi_{i_{\ell}}(P).$

A rule *φ* is individual-good efficient (ig-efficient) if, for each profile *P*, $\varphi\left(P\right)$ does not admit a Pareto-improving single-object exchange at $P.^2$

 \bullet On the lexicographic domain, ig-efficiency $=$ Pareto efficiency.

²i,.e., a cycle

$$
C = (i_0, o_1, i_1, \ldots, i_{k-1}, o_k, i_k = i_0)
$$

such that, for all $\ell \in \{0, \ldots, k-1\}$,

 $(\varphi_{i_{\ell}}(P) \cup o_{\ell+1}) \setminus o_{\ell} P_{i_{\ell}} \varphi_{i_{\ell}}(P).$

A rule *φ* is individual-good efficient (ig-efficient) if, for each profile *P*, $\varphi\left(P\right)$ does not admit a Pareto-improving single-object exchange at $P.^2$

 \bullet On the lexicographic domain, ig-efficiency $=$ Pareto efficiency.

Proposition

TTC is not Pareto efficient, but it is ig-efficient.

²i,.e., a cycle

$$
C = (i_0, o_1, i_1, \ldots, i_{k-1}, o_k, i_k = i_0)
$$

such that, for all $\ell \in \{0, \ldots, k-1\}$,

 $(\varphi_{i_{\ell}}(P) \cup o_{\ell+1}) \setminus o_{\ell} P_{i_{\ell}} \varphi_{i_{\ell}}(P).$

Theorem

An individual-good-based rule satisfies

- ¹ balancedness,
- **2** ig-efficiency,
- ³ the worst endowment lower bound, and
- **4** truncation-proofness

if and only if it is TTC.

Proof.

- Let φ be an individual-good-based rule satisfying properties (1)-(4).
- By our theorem for lexicographic prefs., φ agrees with φ^{TTC} on $\mathcal{L}^{N}.$
- Let $P \in \mathcal{R}^N$, and let $P' \in \mathcal{L}^N$ be such that $\succ^{P'}=\succ^P$.
- Because φ and φ^{TTC} are individual-good-based,

$$
\varphi(P) = \varphi(P') = \varphi^{\text{TTC}}(P') = \varphi^{\text{TTC}}(P). \quad \Box
$$

Lemma

If an individual-good-based rule is balanced and individually rational, then it satisfies the worst endowment lower bound.

Theorem An individual-good-based rule satisfies **1** balancedness, ² ig-efficiency, **3** the worst endowment lower bound individual rationality, and **4** truncation-proofness if and only if it is TTC.

Lemma

If an individual-good-based rule is balanced and individually rational, then it satisfies the worst endowment lower bound.

Results: Incentives

Though it is manipulable, we can show that TTC is

- maxmin strategy-proof; and
- not obviously manipulable in the sense of [Troyan and Morrill \(2020\)](#page-82-6)

Results: Incentives

Though it is manipulable, we can show that TTC is

- maxmin strategy-proof; and
- not obviously manipulable in the sense of [Troyan and Morrill \(2020\)](#page-82-6)

That is, for any problem P , any agent i , any u_i that represents P_i , and any report P'_i ,

$$
\min_{P_{-i}} u_i \left(\varphi_i^{\text{TTC}} \left(P_i, P_{-i} \right) \right) \ge \min_{P'_{-i}} u_i \left(\varphi_i^{\text{TTC}} \left(P'_i, P'_{-i} \right) \right)
$$

$$
\max_{P_{-i}} u_i \left(\varphi_i^{\text{TTC}} \left(P_i, P_{-i} \right) \right) \ge \max_{P'_{-i}} u_i \left(\varphi_i^{\text{TTC}} \left(P'_i, P'_{-i} \right) \right).
$$

Outline

[Setup](#page-16-0)

- 2 [Lexicographic preferences](#page-22-0)
- [Responsive preferences](#page-45-0)
- 4 [The Housing Market](#page-65-0)
- [Related Literature](#page-69-0)
- 6 [Conditionally lexicographic preferences](#page-71-0)

[Conclusion](#page-79-0)

The Housing Market

- The housing market is the special case in which each agent owns and receives one object.
- In this model:
	- ▶ only TTC is Pareto efficient, individually rational, and strategy-proof [\(Ma, 1994\)](#page-82-7).
	- ▶ all allocations are balanced.
	- \triangleright the worst endowment lower bound coincides with individual rationality.

The Housing Market

- The housing market is the special case in which each agent owns and receives one object.
- In this model:
	- ▶ only TTC is Pareto efficient, individually rational, and strategy-proof [\(Ma, 1994\)](#page-82-7).
	- ▶ all allocations are balanced.
	- \triangleright the worst endowment lower bound coincides with individual rationality.

Corollary

Only TTC is Pareto efficient, individually rational, and truncation-proof.

The Housing Market

- The housing market is the special case in which each agent owns and receives one object.
- In this model:
	- ▶ only TTC is Pareto efficient, individually rational, and strategy-proof [\(Ma, 1994\)](#page-82-7).
	- ▶ all allocations are balanced.
	- \triangleright the worst endowment lower bound coincides with individual rationality.

Corollary

Only TTC is Pareto efficient, individually rational, and truncation-proof.

- Though a planner with a stake in the outcome may consider relaxing strategy-proofness to truncation-proofness ...
- ... this relaxation does not give rise to any new rules.

Outline

[Setup](#page-16-0)

- 2 [Lexicographic preferences](#page-22-0)
- [Responsive preferences](#page-45-0)
- **[The Housing Market](#page-65-0)**
- 5 [Related Literature](#page-69-0)
- 6 [Conditionally lexicographic preferences](#page-71-0)

[Conclusion](#page-79-0)

Alternative models and allocation rules

Notes:

- \bullet SD = Serial/sequential dictatorships (e.g., [Ehlers and Klaus \(2003\)](#page-82-8); [Hatfield \(2009\)](#page-82-9))
- \bullet STC = Segmented Trading Cycles [\(Pápai, 2003\)](#page-82-10)
- \bullet Priority = Priority Mechanisms [\(Andersson et al., 2021\)](#page-82-11)
- CIRP = Component-wise IR Priority rules [\(Manjunath and Westkamp, 2021\)](#page-82-12)
- **•** approx. $CE =$ approximate competitive equilibrium (e.g., [Echenique et al., 2023\)](#page-82-13)

Outline

[Setup](#page-16-0)

- [Lexicographic preferences](#page-22-0)
- [Responsive preferences](#page-45-0)
- **[The Housing Market](#page-65-0)**
- [Related Literature](#page-69-0)
- 6 [Conditionally lexicographic preferences](#page-71-0)

[Conclusion](#page-79-0)
Conditionally lexicographic preferences

- Agent *i*'s preferences *Pⁱ* are conditionally lexicographic if for any bundle $Y \subseteq O$ and any nonempty $X \subseteq O\Y$, there is an object $\max_{P_i} \left(X \mid Y \right) \in X$ which is "lexicographically best among X conditional on receiving *Y* ."
	- ▶ $CL \cap R = L$, where CL denotes the conditionally lexicographic domain.

Conditionally lexicographic preferences

- Agent *i*'s preferences *Pⁱ* are conditionally lexicographic if for any bundle $Y \subseteq O$ and any nonempty $X \subseteq O\Y$, there is an object $\max_{P_i} \left(X \mid Y \right) \in X$ which is "lexicographically best among X conditional on receiving *Y* ."
	- ▶ $CL \cap R = L$, where CL denotes the conditionally lexicographic domain.
- Conditionally lexicographic preferences
	- ▶ permit *complementarity* between objects.
	- ▶ simple reporting language in terms of "preference trees."

Properties

Our properties are the same, except for two modifications:

- \bullet the worst endowment lower bound posits that, for each profile P and each agent *i*, $\varphi_i(P)$ does not contain objects that are "conditionally worse" than all objects in her endowment (conditional on receiving $\varphi_i(P)$).
- drop strategy-proofness posits that no agent can manipulate by "dropping an object to the bottom of her lexicographic preference tree."

A characterization

- The extension of TTC to the conditionally lexicographic domain is called Augmented Top Trading Cycles (ATTC) [\(Fujita et al., 2018\)](#page-82-0)
	- ▶ at step t , agent i points to $\max_{P_i} (O^t \mid \mu_i^{t-1})$, where O^t is the set of remaining objects and μ_i^{t-1} is i 's assignment after step $t-1.$
	- ▶ not individual-good-based as it uses information contained in preference trees.

A characterization

- The extension of TTC to the conditionally lexicographic domain is called Augmented Top Trading Cycles (ATTC) [\(Fujita et al., 2018\)](#page-82-0)
	- ▶ at step t , agent i points to $\max_{P_i} (O^t \mid \mu_i^{t-1})$, where O^t is the set of remaining objects and μ_i^{t-1} is i 's assignment after step $t-1.$
	- ▶ not individual-good-based as it uses information contained in preference trees.

Theorem

On the conditionally lexicographic domain, only ATTC satisfies

- Pareto efficiency
- **o** balancedness
- the worst endowment lower bound, and
- o drop strategy-proofness.

Maximal domain results

- \bullet It is known that ig-efficiency $=$ Pareto efficiency on the lexicographic domain [\(Aziz et al., 2019\)](#page-82-1).
- The conditionally lexicographic domain is similarly appealing.

Maximal domain results

- \bullet It is known that ig-efficiency $=$ Pareto efficiency on the lexicographic domain [\(Aziz et al., 2019\)](#page-82-1).
- The conditionally lexicographic domain is similarly appealing.

Proposition

- \bullet ig-efficiency = Pareto efficiency on the conditionally lexicographic domain.
- \bullet CL is a maximal domain on which ig-efficiency = Pareto efficiency.

Outline

[Setup](#page-16-0)

- 2 [Lexicographic preferences](#page-22-0)
- [Responsive preferences](#page-45-0)
- **[The Housing Market](#page-65-0)**
- [Related Literature](#page-69-0)
- 6 [Conditionally lexicographic preferences](#page-71-0)

Conclusion

- Our axiomatic analysis helps us to better understand the trade-offs involved in multi-object reallocation.
- Although it is manipulable, TTC performs surprisingly well according to three criteria of interest: efficiency, individual rationality, and incentives.

Thank you! \odot

- Altuntaş, A., W. Phan, and Y. Tamura (2023): "Some characterizations of generalized top trading cycles," Games and Economic Behavior, 141, 156–181.
- Andersson, T., Á. Cseh, L. Ehlers, and A. Erlanson (2021): "Organizing time exchanges: Lessons from matching markets," American Economic Journal: Microeconomics, 13, 338–373.
- Aziz, H., P. Biró, J. Lang, J. Lesca, and J. Monnot (2019): "Efficient reallocation under additive and responsive preferences," Theoretical Computer Science, 790, 1–15.
- BIRÓ, P., F. KLIJN, AND S. PÁPAI (2022): "Balanced Exchange in a Multi-Unit Shapley-Scarf Market," Barcelona School of Economics Working Paper 1342.
- Budish, E. (2011): "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes," Journal of Political Economy, 119, 1061-1103.
- DUR, U. M., AND M. U. ÜNVER (2019): "Two-sided matching via balanced exchange." Journal of Political Economy, 127, 1156–1177.
- Echenique, F., A. Miralles, and J. Zhang (2023): "Balanced equilibrium in pseudo-markets with endowments," Games and Economic Behavior, 141, 428–443.
- Ehlers, L. (2008): "Truncation strategies in matching markets," Mathematics of Operations Research, 33, 327–335.
- Ehlers, L., and B. Klaus (2003): "Coalitional strategy-proof and resource-monotonic solutions for multiple assignment problems," Social Choice and Welfare, 21, 265–280.
- Ekici, Ö. (2024): "Pair-efficient reallocation of indivisible objects," Theoretical Economics, 19, 551–564.
- FUJITA, E., J. LESCA, A. SONODA, T. TODO, AND M. YOKOO (2018): "A complexity approach for core-selecting exchange under conditionally lexicographic preferences," Journal of Artificial Intelligence Research, 63, 515-555.
- HATFIELD, J. W. (2009): "Strategy-proof, efficient, and nonbossy quota allocations," Social Choice and Welfare, 33, 505–515. Kojima, F. (2013): "Efficient resource allocation under multi-unit demand," Games and economic behavior, 82, 1–14.
- KOJIMA, F., AND P. A. PATHAK (2009): "Incentives and stability in large two-sided matching markets," American Economic Review, 99, 608–27.
- MA, J. (1994): "Strategy-proofness and the strict core in a market with indivisibilities." International Journal of Game Theory, 23, 75–83.
- MANJUNATH, V., AND A. WESTKAMP (2021): "Strategy-proof exchange under trichotomous preferences," Journal of Economic Theory, 193, 105197.
- Milgrom, P. (2009): "Assignment messages and exchanges," American Economic Journal: Microeconomics, 1, 95–113.
- (2011): "Critical issues in the practice of market design," Economic Inquiry, 49, 311–320.
- Pápai, S. (2003): "Strategyproof exchange of indivisible goods," Journal of Mathematical Economics, 39, 931–959.
- ROTH, A. E. (2015): "Experiments in Market Design," in The Handbook of Experimental Economics, Volume 2 ed. by Roth, A. E., and Kagel, J. H.: Princeton University Press, 290–346.
- ROTH, A. E., AND U. G. ROTHBLUM (1999): "Truncation strategies in matching markets—in search of advice for participants," Econometrica, 67, 21–43.
- ROTH, A. E., T. SÖNMEZ, AND M. U. ÜNVER (2004): "Kidney exchange," The Quarterly Journal of Economics, 119, 457-488. (2005): "Pairwise kidney exchange," Journal of Economic theory, 125, 151–188.
- SETHURAMAN, J. (2016): "An alternative proof of a characterization of the TTC mechanism," Operations Research Letters, 40 44, 107–108.

Proof Sketch. Step 1: Select a "minimal profile"

- Toward contradiction, suppose $\varphi \neq \varphi^{\textsf{TTC}}$ is Pareto efficient, individually rational, and truncation-proof.
- We select a profile *P* which is "minimal" according to some criteria—for that we need some notation.

 3 If multiple cycles obtain, we select one with a fixed tie-break rule.

Proof Sketch. Step 1: Select a "minimal profile"

- Toward contradiction, suppose $\varphi \neq \varphi^{\textsf{TTC}}$ is Pareto efficient, individually rational, and truncation-proof.
- We select a profile *P* which is "minimal" according to some criteria—for that we need some notation.
- For each "conflict profile" $P\in \mathcal{C}\coloneqq\left\{P'\mid\varphi\left(P'\right)\neq\varphi^{\mathsf{TTC}}\left(P'\right)\right\}$, let
	- $\blacktriangleright\; C_t\left(P\right)$ be the cycle executed at step t of TTC $(P).^3$
	- ▶ $s(P) = \sum_{i \in N} |\{o \in O \mid o R_i o_i\}|$ be the size of P , where $\omega_i = \{o_i\}.$ $\rho(P) = \min \{ t \in \mathbb{N} \mid \varphi(P) \text{ does not execute } C_t(P) \}.$
- Let $t := \min_{P \in \mathcal{C}} \rho(P)$ be the "earliest point of departure between φ and φ^{TTC} across all conflict profiles."
- Among all profiles in $\{P' \in \mathcal{C} \mid \rho\left(P'\right)=t\}$, let P be one that minimizes *s* (*P*).

 3 If multiple cycles obtain, we select one with a fixed tie-break rule.

- Because $\rho(P) = t$, $\varphi(P)$ executes cycles $C_1(P), \ldots, C_{t-1}(P)$ but not $C_t(P)$.
- Let $C \coloneqq C_t(P)$, say

$$
C = (i_0, o_1, i_1, o_2, \ldots, i_{k-1}, o_k, i_k = i_0).
$$

• Because $\varphi(P)$ does not execute *C*, can assume WLOG that $i_k (= i_0)$ does not receive o_1 . Thus, $\varphi_{i_k}^{\text{TTC}}(P) = o_1 P_{i_k} \varphi_{i_k}(P)^{4}$

⁴By individual rationality, the number of agents on *C* is $k > 2$.

- Because $\rho(P) = t$, $\varphi(P)$ executes cycles $C_1(P), \ldots, C_{t-1}(P)$ but not $C_t(P)$.
- Let $C \coloneqq C_t(P)$, say

$$
C = (i_0, o_1, i_1, o_2, \ldots, i_{k-1}, o_k, i_k = i_0).
$$

- Because $\varphi(P)$ does not execute *C*, can assume WLOG that $i_k (= i_0)$ does not receive o_1 . Thus, $\varphi_{i_k}^{\text{TTC}}(P) = o_1 P_{i_k} \varphi_{i_k}(P)^{4}$
- Thus, the profile P looks as follows (endowments are blue):

⁴By individual rationality, the number of agents on *C* is $k \geq 2$.

- $\mathsf{Suppose} \varphi_{i_k}(P) \neq o_k.$
- By individual rationality, the profile *P* looks as follows:

- $\mathsf{Suppose} \varphi_{i_k}(P) \neq o_k.$
- Let P'_{i_k} be the truncation of P_{i_k} at o_1 :

- $\mathsf{Suppose} \varphi_{i_k}(P) \neq o_k.$
- Let P'_{i_k} be the truncation of P_{i_k} at o_1 :

- Letting $P' \coloneqq \left(P'_{i_k}, P_{-i_k} \right)$, our choice of P implies that $\varphi\left(P' \right)$ ${\sf executes}$ cycles $C_1(P'),\ldots,C_t(P')\ (=C_1(P),\ldots,C_t(P)).$
- Thus, $\varphi_{i_k}(P') = o_1 P_{i_k} \varphi_{i_k}(P)$, a violation of truncation-proofness.

Thus, $\varphi_{i_k}(P) = o_k$, which means that $o_k P_{i_{k-1}} \varphi_{i_{k-1}}(P)$.

Thus, $\varphi_{i_k}(P) = o_k$, which means that $o_k P_{i_{k-1}} \varphi_{i_{k-1}}(P)$.

If $\varphi_{i_{k-1}}(P) \neq o_{k-1}$, then the profile P looks as follows:

. . .

Thus, $\varphi_{i_k}(P) = o_k$, which means that $o_k P_{i_{k-1}} \varphi_{i_{k-1}}(P)$.

If $\varphi_{i_{k-1}}(P) \neq o_{k-1}$, then the profile P looks as follows:

A similar argument shows that $\varphi_{i_{k-1}}\left(P\right)=o_{k-1}.$

Thus, $\varphi_{i_k}(P) = o_k$, which means that $o_k P_{i_{k-1}} \varphi_{i_{k-1}}(P)$.

If $\varphi_{i_{k-1}}(P) \neq o_{k-1}$, then the profile P looks as follows:

A similar argument shows that $\varphi_{i_{k-1}}\left(P\right)=o_{k-1}.$

By a recursive argument, the profile *P* looks as follows:

By a recursive argument, the profile *P* looks as follows:

By a recursive argument, the profile *P* looks as follows:

 \bullet By a recursive argument, the profile P looks as follows:

... but then φ is not Pareto efficient!

