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A B S T R A C T

In the object reallocation problem introduced by Shapley and Scarf (1974), Fujinaka and Wakayama (2018)
showed that Top Trading Cycles (TTC) is the unique rule satisfying individual rationality, strategy-proofness, and
endowments-swapping-proofness. We show that the uniqueness remains true if strategy-proofness is weakened to
truncation-proofness.
1. Introduction

We consider the object reallocation problem introduced by Shapley
and Scarf (1974). There is a group of agents, each of whom is endowed
with a distinct object and equipped with strict preferences over all
objects. An allocation is any redistribution of objects such that each
agent receives one object. A rule specifies how objects are redistributed
given the agents’ endowments and their reported preferences.

Ma (1994) showed that only Gale’s Top Trading Cycles (TTC) rule
satisfies individual rationality, strategy-proofness, and Pareto efficiency.
Recent papers have shown that the uniqueness remains true under
substantially weaker criteria. For example, Ekici (2024) demonstrated
that Pareto efficiency can be weakened to pair efficiency, and Coreno
and Feng (2024) established that strategy-proofness can be relaxed to
truncation-proofness.1 In another direction, Fujinaka and Wakayama
(2018) provided an alternative characterization by replacing Pareto
efficiency with a (logically unrelated) incentive property, endowments-
swapping-proofness.

In this note we characterize TTC through individual rationality,
truncation-proofness, and endowments-swapping-proofness. Thus, we gen-
eralize the result of Fujinaka and Wakayama (2018) by weakening
strategy-proofness to truncation-proofness. Additionally, we show that the

∗ Correspondence to: Department of Economics, The University of Melbourne, VIC 3010, Australia.
E-mail addresses: jacob.coreno@unimelb.edu.au (J. Coreno), dfeng@dufe.edu.cn (D. Feng).

1 A rule is truncation-proof if no agent can manipulate by ‘‘truncating’’ her list of acceptable objects, i.e., elevating her own object in her preference list while
preserving the original ordering of all other objects.

2 That is, for all 𝑎, 𝑏 ∈ 𝑂, 𝑎𝑅𝑖𝑏 means that 𝑎𝑃 𝑖𝑏 or 𝑎 = 𝑏.
3 That is, 𝜔𝑖𝑗 ∈  is such that 𝜔𝑖𝑗 = 𝜔 , 𝜔𝑖𝑗 = 𝜔 , and, for each 𝑘 ∈ 𝑁 ⧵ {𝑖, 𝑗}, 𝜔𝑖𝑗 = 𝜔 .

result of Ekici (2024) cannot be generalized in the same way: there are
other rules satisfying individual rationality, truncation-proofness, and pair
efficiency.

2. Preliminaries

Let 𝑁 ∶= {1,… , 𝑛} be a finite set of agents, and 𝑂 a set of objects
with |𝑂| = 𝑛. An allocation is a bijection 𝜇 ∶ 𝑁 → 𝑂. Let  denote the
set of allocations. For each 𝜇 ∈  and each 𝑖 ∈ 𝑁 , 𝜇𝑖 denotes agent 𝑖’s
assignment at 𝜇, i.e., 𝜇𝑖 = 𝜇(𝑖). Let 𝑃 = (𝑃𝑖)𝑖∈𝑁 be a preference profile
over 𝑂, where 𝑃𝑖 denotes the (strict) preference of agent 𝑖. The weak
preference relation associated with 𝑃𝑖 is denoted by 𝑅𝑖.2 Let  be the
set of all strict preferences. We use the standard notation (𝑃 ′

𝑖 , 𝑃−𝑖) to
denote the profile obtained from 𝑃 by replacing agent 𝑖’s preference
relation 𝑃𝑖 with 𝑃 ′

𝑖 ∈  . A problem is a pair (𝜔, 𝑃 ) ∈  × 𝑁 , where
𝜔 = (𝜔𝑖)𝑖∈𝑁 is an initial allocation. For each 𝑖 ∈ 𝑁 , we say that object
𝜔𝑖 is agent 𝑖’s endowment or that agent 𝑖 is the owner of object 𝜔𝑖. A
rule is a function 𝑓 ∶  × 𝑁 →  that associates with each problem
(𝜔, 𝑃 ) an allocation 𝑓 (𝜔, 𝑃 ). For each 𝑖 ∈ 𝑁 , 𝑓𝑖(𝜔, 𝑃 ) denotes agent 𝑖’s
assignment at 𝑓 (𝜔, 𝑃 ). Let (𝜔, 𝑃 ) be a problem and 𝑖, 𝑗 ∈ 𝑁 . Denote
by 𝜔𝑖𝑗 the initial allocation obtained from 𝜔 by letting agents 𝑖 and 𝑗
swap their endowments.3 We say that 𝑃 ′

𝑖 ∈  is a truncation strategy for
𝑖 𝑗 𝑗 𝑖 𝑘
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(𝜔𝑖, 𝑃𝑖) if (i) {𝑜 ∈ 𝑂 ∣ 𝑜𝑃 ′
𝑖𝜔𝑖} ⊆ {𝑜 ∈ 𝑂 ∣ 𝑜𝑃 𝑖𝜔𝑖}, and (ii) 𝑃 ′

𝑖 agrees with
𝑖 on 𝑂 ⧵ {𝜔𝑖}, i.e., 𝑃 ′

𝑖 |𝑂⧵{𝜔𝑖} = 𝑃𝑖|𝑂⧵{𝜔𝑖}.
4 Moreover, 𝑃 ′

𝑖 is the truncation
f (𝜔𝑖, 𝑃𝑖) at 𝑥 if, in addition, {𝑜 ∈ 𝑂 ∣ 𝑜𝑃 ′

𝑖𝜔𝑖} = {𝑜 ∈ 𝑂 ∣ 𝑜𝑅𝑖𝑥} (i.e., 𝑃 ′
𝑖

anks 𝜔𝑖 immediately below object 𝑥). Denote the set of all truncation
trategies for (𝜔𝑖, 𝑃𝑖) by  (𝜔𝑖, 𝑃𝑖).

We introduce four properties of rules that are central to our analysis.
 rule 𝑓 is
individually rational if, for each (𝜔, 𝑃 ) and each 𝑖, 𝑓𝑖(𝜔, 𝑃 )𝑅𝑖𝜔𝑖.
truncation-proof if, for each (𝜔, 𝑃 ), each 𝑖, and each 𝑃 ′

𝑖 ∈  (𝜔𝑖, 𝑃𝑖),
𝑓𝑖(𝜔, 𝑃 )𝑅𝑖𝑓𝑖(𝜔, (𝑃 ′

𝑖 , 𝑃−𝑖)).
endowments-swapping-proof if, for each (𝜔, 𝑃 ), there is no pair {𝑖, 𝑗}
of agents such that 𝑓𝑖(𝜔𝑖𝑗 , 𝑃 )𝑃 𝑖𝑓𝑖(𝜔, 𝑃 ) and 𝑓𝑗 (𝜔𝑖𝑗 , 𝑃 )𝑃 𝑗𝑓𝑗 (𝜔, 𝑃 ).
pair-efficient if, for each (𝜔, 𝑃 ), there is no pair {𝑖, 𝑗} of agents such
that 𝑓𝑖(𝜔, 𝑃 )𝑃 𝑗𝑓𝑗 (𝜔, 𝑃 ) and 𝑓𝑗 (𝜔, 𝑃 )𝑃 𝑖𝑓𝑖(𝜔, 𝑃 ).

Top trading cycles

Let 𝑓𝑇 𝑇 𝐶 denote the Top Trading Cycles (TTC) rule. For each problem
(𝜔, 𝑃 ), 𝑓𝑇 𝑇 𝐶 (𝜔, 𝑃 ) is the allocation determined by the following TTC
algorithm at (𝜔, 𝑃 ), which we call TTC(𝜔, 𝑃 ).

Algorithm: TTC(𝜔, 𝑃 ).

Step 𝜏 (≥ 1): Each agent points to her most-preferred remaining object
given 𝑃 . Each remaining object points to its owner given 𝜔.
There exists at least one cycle. Execute all cycles by assigning
each agent involved in a cycle the object to which she points.
Remove all objects involved in a cycle. If some objects remain,
then proceed to step 𝜏 + 1.

Termination: The algorithm terminates (in at most 𝑛 steps) when no
object remains.

3. The main result

Theorem 1. A rule 𝑓 is individually rational, truncation-proof, and
endowments-swapping-proof if and only if 𝑓 = 𝑓𝑇 𝑇 𝐶 .

Proof of Theorem 1

It suffices to prove the uniqueness (only if) part of the theorem.
Toward contradiction, suppose that 𝑓 satisfies the stated properties but
𝑓 ≠ 𝑓𝑇 𝑇 𝐶 . We start by selecting a problem which is ‘‘minimal’’ accord-
ing to some criteria. As in Coreno and Feng (2024), we simultaneously
exploit the notions of ‘‘size’’ from Sethuraman (2016) and ‘‘similarity’’
rom Ekici (2024).
Size: The size of a problem (𝜔, 𝑃 ) is 𝑠(𝜔, 𝑃 ) = ∑

𝑖∈𝑁 |{𝑜 ∈ 𝑂 ∣ 𝑜𝑅𝑖𝜔𝑖}|.
For each problem (𝜔, 𝑃 ) and each 𝑡 ∈ N, let 𝑡(𝜔, 𝑃 ) be the set of

cycles that obtain at step 𝑡 of TTC(𝜔, 𝑃 ).5 For any cycle 𝐶, let 𝑁(𝐶) and
(𝐶) be the sets of agents and objects, respectively, that are involved

n 𝐶. We say that an allocation 𝜇 executes 𝐶 if, for each 𝑖 ∈ 𝑁(𝐶), 𝜇𝑖
s the object to which 𝑖 points on 𝐶; otherwise, we say that 𝜇 does not
xecute 𝐶.
Similarity: The similarity between 𝑓 and 𝑓𝑇 𝑇 𝐶 is a function 𝜌 ∶  ×
𝑁 → {1,… , 𝑛 + 1} defined as follows. For each problem (𝜔, 𝑃 ), if
𝑓 (𝜔, 𝑃 ) = 𝑓𝑇 𝑇 𝐶 (𝜔, 𝑃 ), then 𝜌(𝜔, 𝑃 ) = 𝑛 + 1; otherwise,

𝜌(𝜔, 𝑃 ) = min
{

𝜏 ∈ {1,… , 𝑛} ∣ there exists 𝐶 ∈ 𝜏 (𝜔, 𝑃 )
such that 𝑓 (𝜔, 𝑃 ) does not execute 𝐶} .

4 For each 𝑋 ⊆ 𝑂, 𝑃𝑖|𝑋 is the restriction of 𝑃𝑖 to 𝑋. That is, 𝑃𝑖|𝑋 is a strict
linear order over 𝑋 such that for any 𝑜, 𝑜′ ∈ 𝑋, 𝑜𝑃 𝑖|𝑋𝑜′ if and only if 𝑜𝑃 𝑖𝑜′.

5 We assume that, if TTC(𝜔, 𝑃 ) terminates before step 𝑡, then  (𝜔, 𝑃 ) = ∅.
𝑡

2 
That is, 𝜌(𝜔, 𝑃 ) = 𝜏, where 𝜏 is the earliest step of TTC(𝜔, 𝑃 ) at which
𝑓 (𝜔, 𝑃 ) does not execute all cycles in 𝜏 (𝜔, 𝑃 ).6
Select a ‘‘minimal’’ problem: Let 𝑡 ∶= min(𝜔,𝑃 ) 𝜌(𝜔, 𝑃 ). Then 𝑓 ≠ 𝑓𝑇 𝑇 𝐶
implies that 𝑡 ≤ 𝑛. Among all problems in {(𝜔, 𝑃 ) ∈  × 𝑁 ∣ 𝜌(𝜔, 𝑃 ) =
}, let (𝜔, 𝑃 ) be one whose size is smallest. Hence, for any problem
𝜔′, 𝑃 ′),

either (i) 𝑡 < 𝜌(𝜔′, 𝑃 ′) or (ii) 𝜌(𝜔′, 𝑃 ′) = 𝑡 and 𝑠(𝜔, 𝑃 ) ≤ 𝑠(𝜔′, 𝑃 ′).

Since 𝜌(𝜔, 𝑃 ) = 𝑡 ≤ 𝑛, 𝑓 (𝜔, 𝑃 ) executes all cycles in ⋃𝑡−1
𝜏=1 𝜏 (𝜔, 𝑃 ),

ut it does not execute some cycle in 𝑡(𝜔, 𝑃 ). Let 𝑁 𝑡 and 𝑂𝑡 be the
ets of agents and objects, respectively, that are remaining at step 𝑡 of
TC(𝜔, 𝑃 ). Let 𝐶 ∈ 𝑡(𝜔, 𝑃 ) be a cycle which is not executed by 𝑓 (𝜔, 𝑃 ).
uppose that

𝐶 = (𝑖0, 𝑜1, 𝑖1, 𝑜2,… , 𝑜𝑘−1, 𝑖𝑘−1, 𝑜𝑘, 𝑖𝑘 = 𝑖0).

Note that, by the definition of 𝑓𝑇 𝑇 𝐶 , for each agent 𝑖𝓁 ∈ 𝑁(𝐶), 𝑜𝓁+1 =
𝑓𝑇 𝑇 𝐶
𝑖𝓁

(𝜔, 𝑃 ) is agent 𝑖𝓁 ’s most-preferred object in 𝑂𝑡 at 𝑃𝑖𝓁 . Thus,

for all 𝑖 ∈ 𝑁(𝐶), 𝑓𝑇 𝑇 𝐶
𝑖 (𝜔, 𝑃 )𝑅𝑖𝑓𝑖(𝜔, 𝑃 ). (1)

Because 𝑓 (𝜔, 𝑃 ) does not execute 𝐶, there is an agent 𝑖𝓁 ∈ 𝑁(𝐶)
uch that 𝑜𝓁+1 ≠ 𝑓𝑖𝓁 (𝜔, 𝑃 ). Without loss of generality, let 𝑖𝓁 = 𝑖𝑘
= 𝑖0). Thus, (1) implies that 𝑜1𝑃 𝑖𝑘𝑓𝑖𝑘 (𝜔, 𝑃 ). If |𝑁(𝐶)| = 𝑘 = 1, then
= (𝑖0, 𝑜1, 𝑖1 = 𝑖0) and 𝜔𝑖1 = 𝑜1𝑃 𝑖1𝑓𝑖1 (𝜔, 𝑃 ), which violates individual

ationality of 𝑓 . Thus, |𝑁(𝐶)| ≥ 2.

Claim 1. For each 𝑖𝓁 ∈ 𝑁(𝐶),

(a) 𝑜𝓁+1 and 𝑜𝓁 are ‘‘adjacent’’ in 𝑃𝑖𝓁 , i.e., {𝑜 ∈ 𝑂 ⧵ {𝑜𝓁 , 𝑜𝓁+1} ∣
𝑜𝓁+1𝑃 𝑖𝓁 𝑜𝑃 𝑖𝓁 𝑜𝓁} = ∅; and

(b) 𝑓𝑖𝓁 (𝑃 , 𝜔) = 𝑜𝑖𝓁 .

Proof of Claim 1. First consider agent 𝑖𝑘. Toward contradiction,
suppose that (a) fails, i.e., there exists 𝑜 ∈ 𝑂 ⧵ {𝑜1, 𝑜𝑘} such that
1𝑃 𝑖𝑘𝑜𝑃 𝑖𝑘𝑜𝑘. Recall that 𝜔𝑖𝑘 = 𝑜𝑘. Let 𝑃 ′

𝑖𝑘
be the truncation of (𝜔𝑖𝑘 , 𝑃𝑖𝑘 )

at 𝑜1, i.e., 𝑃 ′
𝑖𝑘

∶ … , 𝑜1, 𝑜𝑘,… . Let 𝑃 ′ ∶= (𝑃 ′
𝑖𝑘
, 𝑃−𝑖𝑘 ). Then 𝑠(𝜔, 𝑃 ′) <

𝑠(𝜔, 𝑃 ). Also note that by the definition of 𝑓𝑇 𝑇 𝐶 , induced cycles remain
unchanged, i.e., for each 𝜏, 𝜏 (𝜔, 𝑃 ′) = 𝜏 (𝜔, 𝑃 ). By the choice of
𝜔, 𝑃 ), 𝑠(𝜔, 𝑃 ′) < 𝑠(𝜔, 𝑃 ) implies that 𝜌(𝜔, 𝑃 ′) > 𝜌(𝜔, 𝑃 ) = 𝑡. Thus,
(𝜔, 𝑃 ′) executes all cycles in ⋃𝑡

𝜏=1 𝜏 (𝜔, 𝑃 ′) = ⋃𝑡
𝜏=1 𝜏 (𝜔, 𝑃 ). Since

∈ 𝑡(𝜔, 𝑃 ), we see that 𝑓 (𝜔, 𝑃 ′) executes 𝐶. Thus, 𝑓𝑖𝑘 (𝜔, 𝑃 ′) = 𝑜1,
hich contradicts truncation-proofness of 𝑓 . Thus, (a) holds for agent

𝑘. By (1) and individual rationality of 𝑓 , we must have 𝑓𝑖𝑘 (𝜔, 𝑃 ) = 𝑜𝑘.
hus, (b) also holds for agent 𝑖𝑘.

Now consider agent 𝑖𝑘−1. Because 𝑓𝑖𝑘 (𝜔, 𝑃 ) = 𝑜𝑘 and 𝑜𝑘 is 𝑖𝑘−1’s
ost-preferred object in 𝑂𝑡 at 𝑃𝑖𝑘−1 , we must have 𝑜𝑘𝑃 𝑖𝑘−1𝑓𝑖𝑘−1 (𝜔, 𝑃 ).
herefore, a similar argument shows that {𝑜 ∈ 𝑂 ⧵ {𝑜𝑘−1, 𝑜𝑘} ∣
𝑘𝑃 𝑖𝑘−1𝑜𝑃 𝑖𝑘−1𝑜𝑘−1} = ∅ and 𝑓𝑖𝑘−1 (𝜔, 𝑃 ) = 𝑜𝑘−1. That is, conditions (a)
nd (b) also hold for agent 𝑖𝑘−1. Proceeding by induction, one can show
hat conditions (a) and (b) hold for each agent 𝑖𝓁 ∈ 𝑁(𝐶). ■

Claim 1, which invokes only individual rationality and truncation-
roofness, implies that, when restricted to the agents in 𝑁(𝐶), the
roblem (𝜔, 𝑃 ) looks as follows (with agents’ endowments underlined):

𝑃𝑖1 𝑃𝑖2 ⋯ 𝑃𝑖𝑘−1 𝑃𝑖𝑘
⋮ ⋮ ⋱ ⋮ ⋮

𝑜2 𝑜3 ⋯ 𝑜𝑘 𝑜1
𝑜1 𝑜2 ⋯ 𝑜𝑘−1 𝑜𝑘

⋮ ⋮ ⋱ ⋮ ⋮

6 Note that, for each problem (𝜔, 𝑃 ), (i) 𝜌(𝜔, 𝑃 ) ≤ 𝑛+ 1, and (ii) 𝜌(𝜔, 𝑃 ) = 𝑛+ 1
if and only if 𝑓 (𝜔, 𝑃 ) = 𝑓 𝑇 𝑇 𝐶 (𝜔, 𝑃 ).
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Now consider the problem (𝜔, 𝑃 ), where 𝜔 ∶= 𝜔𝑖1𝑖2 is the initial
allocation obtained from 𝜔 by letting agents 𝑖1 and 𝑖2 swap their en-
dowments. The following claim says that, for each step 𝜏 ∈ {1,… , 𝑡− 1},
every cycle that obtains under TTC(𝜔, 𝑃 ) also obtains under TTC(𝜔, 𝑃 ).

Claim 2. For each 𝜏 ∈ {1,… , 𝑡 − 1}, 𝜏 (𝜔, 𝑃 ) ⊆ 𝜏 (𝜔, 𝑃 ).
The intuition behind Claim 2 is as follows. Each cycle in ⋃𝑡−1

𝜏=1 𝜏 (𝜔, 𝑃
nvolves only agents in 𝑁∖𝑁 𝑡, and each agent 𝑖 ∈ 𝑁∖𝑁 𝑡 has the same
ndowment and the same preferences at the two problems (𝜔, 𝑃 ) and
𝜔, 𝑃 ). Thus, 1(𝜔, 𝑃 ) ⊆ 1(𝜔, 𝑃 ). The remaining inclusions then follow

from a recursive argument. The formal proof is given at the end of this
subsection.

Claim 2 implies that, at 𝑓𝑇 𝑇 𝐶 (𝜔, 𝑃 ), no agent 𝑖𝓁 ∈ 𝑁(𝐶) is assigned
n object that she prefers to 𝑜𝓁+1, as any such object is assigned to
omeone else via some cycle in ⋃𝑡−1

𝜏=1 𝜏 (𝜔, 𝑃 ). Thus, by the definition of
𝑓𝑇 𝑇 𝐶 , the cycles 𝐶 ′ ∶= (𝑖1, 𝑜2, 𝑖1) and 𝐶 ′′ ∶= (𝑖0, 𝑜1, 𝑖2, 𝑜3,… , 𝑜𝑘, 𝑖𝑘 = 𝑖0)
must clear at some steps 𝜏′ ≤ 𝑡 and 𝜏′′ ≤ 𝑡, respectively, of TTC(𝜔, 𝑃 ).

hat is, 𝐶 ′, 𝐶 ′′ ∈
⋃𝑡

𝜏=1 𝜏 (𝜔, 𝑃 ).
Additionally, Claim 2 and the fact that 𝜌(𝜔, 𝑃 ) ≥ 𝑡 imply that,

at 𝑓 (𝜔, 𝑃 ), agent 𝑖1 is not assigned an object that she prefers to
𝜔𝑖1 = 𝑜2, as any such object is assigned to someone else via some
ycle in ⋃𝑡−1

𝜏=1 𝜏 (𝜔, 𝑃 ). Thus, individual rationality of 𝑓 implies that
𝑓𝑖1 (𝜔, 𝑃 ) = 𝑜2𝑃 𝑖1𝑓𝑖1 (𝜔, 𝑃 ). By endowments-swapping-proofness of 𝑓 ,
𝑓𝑖2 (𝜔, 𝑃 ) = 𝑜2𝑅𝑖2𝑓𝑖2 (𝜔, 𝑃 ). Furthermore, 𝑓𝑖2 (𝜔, 𝑃 ) ≠ 𝑜2 implies that
𝑜2𝑃 𝑖2𝑓𝑖2 (𝜔, 𝑃 ).

Let 𝑃 ′
𝑖2

be the truncation of (𝜔𝑖2 , 𝑃𝑖2 ) at 𝑜3, i.e., 𝑃 ′
𝑖2
∶ … , 𝑜3, 𝑜1, 𝑜2,… .

et 𝑃 ′ ∶= (𝑃 ′
𝑖2
, 𝑃−𝑖2 ). Then, for the agents in 𝑁(𝐶), the problem (𝜔, 𝑃 ′)

ooks as follows (with agents’ endowments underlined):

𝑃 ′
𝑖1

𝑃 ′
𝑖2

⋯ 𝑃 ′
𝑖𝑘−1

𝑃 ′
𝑖𝑘

⋮ ⋮ ⋱ ⋮ ⋮

𝑜2 𝑜3 ⋯ 𝑜𝑘 𝑜1

𝑜1 𝑜1 ⋯ 𝑜𝑘−1 𝑜𝑘

⋮ 𝑜2 ⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋮ ⋮

Observe that 𝑠(𝜔, 𝑃 ′) < 𝑠(𝜔, 𝑃 ). Therefore, the choice of (𝜔, 𝑃 )
implies that 𝜌(𝜔, 𝑃 ′) > 𝜌(𝜔, 𝑃 ) = 𝑡. Thus, 𝑓 (𝜔, 𝑃 ′) executes all cycles
in ⋃𝑡

𝜏=1 𝜏 (𝜔, 𝑃 ′). By the definition of 𝑓𝑇 𝑇 𝐶 , the algorithms TTC(𝜔, 𝑃 ′)
nd TTC(𝜔, 𝑃 ) generate and execute the same cycles, i.e., for each step

𝜏, 𝜏 (𝜔, 𝑃 ′) = 𝜏 (𝜔, 𝑃 ). In particular, 𝑓 (𝜔, 𝑃 ′) executes 𝐶 ′′. However,
this means that 𝑓𝑖2 (𝜔, 𝑃 ′) = 𝑜3, a violation of truncation-proofness. This
ompletes the proof of Theorem 1 under the assumption that Claim 2

holds.
To prove Claim 2, we prove the following stronger claim.7

Claim 3. For each 𝜏 ∈ {1,… , 𝑡 − 1}, the following statements hold:

1(𝜏): 𝜏 (𝜔, 𝑃 ) ⊆ 𝜏 (𝜔, 𝑃 ); and
2(𝜏): 𝐶 ∈ 𝜏 (𝜔, 𝑃 ) ⧵ 𝜏 (𝜔, 𝑃 ) implies that 𝑂(𝐶) ⊆ 𝑂𝑡.

Proof of Claim 3. Suppose otherwise. We start by introducing some
otation. Let 𝜏 be the earliest step at which 𝑆1(𝜏) or 𝑆2(𝜏) fails. Let 𝑂𝜏

nd 𝑂
𝜏

denote the sets of objects remaining at step 𝜏 of TTC(𝜔, 𝑃 ) and
TTC(𝜔, 𝑃 ), respectively. Similarly, 𝑁𝜏 and 𝑁

𝜏
denote the corresponding

sets of agents. For any nonempty subset 𝑋 ⊆ 𝑂, let t op𝑃𝑖 (𝑋) denote the

7 To prove Claim 2, some additional care is needed to show that, for any
step 𝜏, any additional cycle that clears during TTC(𝜔, 𝑃 ) but not TTC(𝜔, 𝑃 ) does
not ‘‘interfere’’ with the execution of the remaining cycles in ⋃𝑡−1

𝜏+1 𝜏 (𝜔, 𝑃 ).
This is the content of the second part of Claim 3.
3 
most-preferred object in 𝑋 at 𝑃𝑖.8
The choice of 𝜏 implies that, for each 𝜏′ < 𝜏, 𝑆1(𝜏′) and 𝑆2(𝜏′) are

both true. Therefore,

𝑂
𝜏
⊆ 𝑂𝜏 and 𝑂

𝜏
∖𝑂𝑡 = 𝑂𝜏∖𝑂𝑡.

Let 𝑖 ∈ 𝑁𝜏∖𝑁 𝑡 (= 𝑁
𝜏
∖𝑁 𝑡). Because 𝜏 < 𝑡, the definition of 𝑓𝑇 𝑇 𝐶

implies that agent 𝑖 prefers 𝑓𝑇 𝑇 𝐶
𝑖 (𝜔, 𝑃 ) ∈ 𝑂𝜏∖𝑂𝑡 to any object in 𝑂𝑡.

Thus, t op𝑃𝑖 (𝑂𝜏 ) ∈ 𝑂𝜏∖𝑂𝑡. It follows that, for each 𝑖 ∈ 𝑁𝜏∖𝑁 𝑡,

t op𝑃𝑖 (𝑂𝜏 ) = t op𝑃𝑖 (𝑂𝜏∖𝑂𝑡) = t op𝑃𝑖 (𝑂
𝜏
∖𝑂𝑡) = t op𝑃𝑖 (𝑂

𝜏
). (2)

In other words, at step 𝜏, each agent 𝑖 ∈ 𝑁𝜏∖𝑁 𝑡 points to the same
object in TTC(𝜔, 𝑃 ) and in TTC(𝜔, 𝑃 ).

We now show that 𝑆1(𝜏) holds. Let 𝐶̃ ∈ 𝜏 (𝜔, 𝑃 ) and 𝑖 ∈ 𝑁(𝐶̃).
hen agent 𝑖 points to 𝑓𝑇 𝑇 𝐶

𝑖 (𝜔, 𝑃 ) on 𝐶̃. Because 𝜏 < 𝑡, we have that
∈ 𝑁𝜏∖𝑁 𝑡. Thus, by (2), (i) agent 𝑖 also points to 𝑓𝑇 𝑇 𝐶

𝑖 (𝜔, 𝑃 ) at step
𝜏 of TTC(𝜔, 𝑃 ). Furthermore, 𝑖 ∉ 𝑁 𝑡 implies that (ii) 𝜔𝑖 = 𝜔𝑖. Since (i)
nd (ii) hold for each agent 𝑖 ∈ 𝑁(𝐶̃), we have that 𝐶̃ ∈ 𝜏 (𝜔, 𝑃 ). Thus,

𝑆1(𝜏) holds, which means that 𝑆2(𝜏) fails.
Because 𝑆2(𝜏) fails, there is a cycle 𝐶 ∈ 𝜏 (𝜔, 𝑃 )∖𝜏 (𝜔, 𝑃 ) such that

(𝐶) ⊈ 𝑂𝑡 and, hence, 𝑁(𝐶) ⊈ 𝑁 𝑡. Let 𝑗0 ∈ 𝑁(𝐶)∖𝑁 𝑡. Then 𝑁(𝐶) ⊆
𝑁

𝜏
⊆ 𝑁𝜏 , which means that 𝑗0 ∈ 𝑁𝜏∖𝑁 𝑡. Let agent 𝑗0 point to object 𝑥1

on 𝐶. By (2), 𝑥1 ∈ 𝑂(𝐶)∖𝑂𝑡, which means that the owner of 𝑥1 (at 𝜔 and
𝜔) is an agent 𝑗1 ∈ 𝑁(𝐶)∖𝑁 𝑡. Repeating the above argument, we show
hat, on 𝐶, agent 𝑗1 points to an object 𝑥2 ∈ 𝑂(𝐶)∖𝑂𝑡 which is owned
at 𝜔 and 𝜔) by an agent 𝑗2 ∈ 𝑁(𝐶)∖𝑁 𝑡. A recursive argument shows
hat all agents on 𝐶 must belong to 𝑁∖𝑁 𝑡. Hence, 𝑁(𝐶) ⊆ 𝑁𝜏∖𝑁 𝑡.

By (2), (i) every agent on 𝑁(𝐶) points to the same object at step 𝜏
uring TTC(𝜔, 𝑃 ) and TTC(𝜔, 𝑃 ). Moreover, (ii) every agent in 𝑁(𝐶) is
ndowed with the same object at 𝜔 and 𝜔. Thus, (i) and (ii) imply that
𝐶 ∈ 𝜏 (𝜔, 𝑃 ), a contradiction. ■

4. Discussion

Recently, Chen et al. (2024) established that the uniqueness results
f Fujinaka and Wakayama (2018) and Ekici (2024) both remain true
f strategy-proofness is weakened to truncation-invariance.9 That is, they

show that TTC is characterized by the following sets of properties:

1. individual rationality, truncation-invariance, and
endowments-swapping-proofness; and

2. individual rationality, truncation-invariance, and pair-efficiency.

While Theorem 1 shows that the uniqueness result of Fujinaka
and Wakayama (2018) can be refined by relaxing strategy-proofness to
truncation-proofness, the uniqueness result of Ekici (2024) does not per-
mit a similar refinement. The following example gives a rule, different
rom TTC, that still satisfies individual rationality, truncation-proofness,
nd pair-efficiency.10

Example 1 (Individual Rationality, Truncation-Proofness, and
Pair-Efficiency ⟹̸ TTC). Let 𝑁 = {1, 2, 3}. Let (𝜔∗, 𝑃 ∗) be a problem
with 𝜔∗ = (𝑜1, 𝑜2, 𝑜3) and

𝑃 ∗
1 ∶ 𝑜2, 𝑜1, 𝑜3; 𝑃 ∗

2 ∶ 𝑜3, 𝑜2, 𝑜1; 𝑃 ∗
3 ∶ 𝑜1, 𝑜3, 𝑜2.

Let 𝑓 be the rule defined as follows:

𝑓 (𝜔, 𝑃 ) =
{

𝜔∗, if (𝜔, 𝑃 ) = (𝜔∗, 𝑃 ∗)
𝑓𝑇 𝑇 𝐶 (𝜔, 𝑃 ), otherwise.

Clearly, 𝑓 is pair-efficient and individually rational. It is straightfor-
ward to show that 𝑓 is truncation-proof. However, 𝑓 is not truncation-
invariant : If 𝑃 ′

1 ∶ 𝑜2, 𝑜3, 𝑜1, then

8 Formally, t op𝑃𝑖
(𝑋) ∈ 𝑋 and, for all 𝑜 ∈ 𝑋, t op𝑃𝑖

(𝑋)𝑅𝑖𝑜.
9 A rule 𝑓 is truncation-invariant if, for each problem (𝜔, 𝑃 ), each 𝑖 ∈ 𝑁 ,

nd each 𝑃 ′
𝑖 ∈  , 𝑓𝑖(𝜔, (𝑃 ′

𝑖 , 𝑃−𝑖)) = 𝑓𝑖(𝜔, 𝑃 ) whenever 𝑃 ′
𝑖 agrees with 𝑃𝑖 on

{𝑜 ∈ 𝑂 ∣ 𝑜𝑃 ′
𝑖𝑓𝑖(𝜔, 𝑃 )}.

10 This example first appeared in an early draft of Coreno and Feng (2024).
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𝑓1(𝜔∗, (𝑃 ′
1 , 𝑃 ∗

−1)) = 𝑜2𝑃
∗
1𝑜1 = 𝑓1(𝜔∗, 𝑃 ∗),

even though 𝑃 ∗
1 agrees with 𝑃 ′

1 on {𝑜 ∈ 𝑂 ∣ 𝑜𝑃 ′
1𝑓1(𝜔∗, 𝑃 ∗)}. Similarly,

is not endowments-swapping-proof because agents 1 and 2 prefer to
wap their endowments at (𝜔∗, 𝑃 ∗). ⋄

Example 1 demonstrates that, in the presence of individual ratio-
nality and pair-efficiency, truncation-proofness is strictly weaker than
truncation-invariance.11 It also sheds some light on the importance of our
roof technique, whereby we select a problem that is ‘‘minimal’’ accord-
ng to both similarity and size. Chen et al. (2024) showed that, under
truncation-invariance, the original approach of Sethuraman (2016) (see
lso Ekici and Sethuraman, 2024)—which exploits only the size of
 problem—is sufficient to pin down TTC. Example 1 highlights the

difficulty in adapting this argument under truncation-proofness. The
difficulty arises because truncation-proofness precludes agents from ma-
nipulating in only one direction: it defends against manipulations from
a preference relation 𝑃𝑖 to a truncation 𝑃 ′

𝑖 of (𝜔𝑖, 𝑃𝑖), but it does not
prevent manipulations from 𝑃 ′

𝑖 back to 𝑃𝑖.12

Our analysis suggests a promising direction for future research.
iven the wide variety of rules satisfying individual rationality, truncation
roofness, and pair-efficiency, a complete characterization of this en-
ire class would be a significant contribution. Clearly, the rule 𝑓 of

Example 1 is unsatisfactory, as it is Pareto-dominated by 𝑓𝑇 𝑇 𝐶 . It would
be interesting to know whether this class admits other appealing rules.
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