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Abstract

In the object reallocation problem introduced by Shapley and Scarf (1974), Fujinaka
and Wakayama (2018) showed that Top Trading Cycles (TTC) is the unique rule satisfying
individual rationality, strategy-proofness, and endowments-swapping-proofness. We show
that the uniqueness remains true if strategy-proofness is weakened to truncation-proofness.
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1 Introduction

We consider the object reallocation problem introduced by Shapley and Scarf (1974). There is
a group of agents, each of whom is endowed with a distinct object and equipped with strict
preferences over all objects. An allocation is any redistribution of objects such that each agent
receives one object. A rule specifies how objects are redistributed given the agents’ endowments
and their reported preferences.

Ma (1994) showed that only Gale’s Top Trading Cycles (TTC) rule satisfies individual ratio-
nality, strategy-proofness, and Pareto efficiency. Recent papers have shown that the uniqueness
remains true under substantially weaker criteria. For example, Ekici (2024) demonstrated that
Pareto efficiency can be weakened to pair efficiency, and Coreno and Feng (2024) established
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that strategy-proofness can be relaxed to truncation-proofness.1 In another direction, Fujinaka
and Wakayama (2018) provided an alternative characterization by replacing Pareto efficiency
with a (logically unrelated) incentive property, endowments-swapping-proofness.

In this note we characterize TTC through individual rationality, truncation-proofness, and
endowments-swapping-proofness. Thus, we generalize the result of Fujinaka and Wakayama
(2018) by weakening strategy-proofness to truncation-proofness. Additionally, we show that the
result of Ekici (2024) cannot be generalized in the same way: there are other rules satisfying
individual rationality, truncation-proofness, and pair efficiency.

2 Preliminaries

Let N := {1, . . . , n} be a finite set of agents, and O a set of objects with |O| = n. An allocation
is a bijection µ : N → O. Let A denote the set of allocations. For each µ ∈ A and each
i ∈ N , µi denotes agent i’s assignment at µ, i.e., µi = µ(i). Let P = (Pi)i∈N be a preference
profile over O, where Pi denotes the (strict) preference of agent i. The weak preference relation
associated with Pi is denoted by Ri.2 Let P be the set of all strict preferences. We use
the standard notation (P ′

i , P−i) to denote the profile obtained from P by replacing agent i’s
preference relation Pi with P ′

i ∈ P . A problem is a pair (ω, P ) ∈ A × PN , where ω = (ωi)i∈N

is an initial allocation. For each i ∈ N , we say that object ωi is agent i’s endowment or that
agent i is the owner of object ωi. A rule is a function f : A×PN → A that associates with each
problem (ω, P ) an allocation f(ω, P ). For each i ∈ N , fi(ω, P ) denotes agent i’s assignment at
f(ω, P ). Let (ω, P ) be a problem and i, j ∈ N . Denote by ωij the initial allocation obtained
from ω by letting agents i and j swap their endowments.3 We say that P ′

i ∈ P is a truncation
strategy for (ωi, Pi) if (i) {o ∈ O | o P ′

i ωi} ⊆ {o ∈ O | o Pi ωi}, and (ii) P ′
i agrees with Pi

on O \ {ωi}, i.e., P ′
i |O\{ωi} = Pi|O\{ωi}.4 Moreover, P ′

i is the truncation of (ωi, Pi) at x if, in
addition, {o ∈ O | o P ′

i ωi} = {o ∈ O | o Ri x} (i.e., P ′
i ranks ωi immediately below object x).

Denote the set of all truncation strategies for (ωi, Pi) by T (ωi, Pi).
We introduce four properties of rules that are central to our analysis. A rule f is

individually rational if, for each (ω, P ) and each i, fi(ω, P ) Ri ωi.
truncation-proof if, for each (ω, P ), each i, and each P ′

i ∈ T (ωi, Pi), fi(ω, P )Rifi(ω, (P ′
i , P−i)).

endowments-swapping-proof if, for each (ω, P ), there is no pair {i, j} of agents such that
fi(ωij, P ) Pi fi(ω, P ) and fj(ωij, P ) Pj fj(ω, P ).

1A rule is truncation-proof if no agent can manipulate by “truncating” her list of acceptable objects, i.e.,
elevating her own object in her preference list while preserving the original ordering of all other objects.

2That is, for all a, b ∈ O, a Ri b means that a Pi b or a = b.
3That is, ωij ∈ A is such that ωij

i = ωj , ωij
j = ωi, and, for each k ∈ N \ {i, j}, ωij

k = ωk.
4For each X ⊆ O, Pi|X is the restriction of Pi to X. Formally, Pi|X = Pi ∩ (X × X).
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pair-efficient if, for each (ω, P ), there is no pair {i, j} of agents such that fi(ω, P ) Pj fj(ω, P )
and fj(ω, P ) Pi fi(ω, P ).

Top Trading Cycles

Let φ denote the Top Trading Cycles (TTC) rule. For each problem (ω, P ), φ(ω, P ) is the
allocation determined by the following TTC algorithm at (ω, P ), which we call TTC(ω, P ).

Algorithm: TTC(ω, P ).

Step τ (≥ 1): Each agent points to her most-preferred remaining object given P . Each re-
maining object points to its owner given ω. There exists at least one cycle. Execute all
cycles by assigning each agent involved in a cycle the object to which she points. Remove
all objects involved in a cycle. If some objects remain, then proceed to step τ + 1.

Termination: The algorithm terminates (in at most n steps) when no object remains.

3 The main result

Theorem 1. A rule f is individually rational, truncation-proof, and endowments-
swapping-proof if and only if f = φ.

Proof of Theorem 1

It suffices to prove the uniqueness (only if) part of the theorem. Toward contradiction, suppose
that f satisfies the stated properties but f ̸= φ. We start by selecting a problem which is
“minimal” according to some criteria. As in Coreno and Feng (2024), we simultaneously exploit
the notions of “size” from Sethuraman (2016) and “similarity” from Ekici (2024).
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Size: The size of a problem (ω, P ) is s(ω, P ) = ∑
i∈N |{o ∈ O | o Ri ωi}|.

For each problem (ω, P ) and each t ∈ N, let Ct(ω, P ) be the set of cycles that obtain at
step t of TTC(ω, P ).5 For any cycle C, let N(C) and O(C) be the sets of agents and objects,
respectively, that are involved in C. We say that an allocation µ executes C if, for each i ∈ N(C),
µi is the object to which i points on C; otherwise, we say that µ does not execute C.
Similarity: The similarity between f and φ is a function ρ : A × PN → {1, . . . , n + 1} defined
as follows. For each problem (ω, P ), if f(ω, P ) = φ(ω, P ), then ρ(ω, P ) = n + 1; otherwise,

ρ(ω, P ) = min {τ ∈ {1, . . . , n} | there exists C ∈ Cτ (ω, P ) such that f(ω, P ) does not execute C} .

That is, ρ(ω, P ) = τ , where τ is the earliest step of TTC(ω, P ) at which f(ω, P ) does not
execute all cycles in Cτ (ω, P ).6

Select a “minimal” problem: Let t := min(ω,P ) ρ(ω, P ). Then f ̸= φ implies that t ≤ n.
Among all problems in {(ω, P ) ∈ A×PN | ρ(ω, P ) = t}, let (ω, P ) be one whose size is smallest.
Hence, for any problem (ω′, P ′),

either (i) t < ρ(ω′, P ′) or (ii) ρ(ω′, P ′) = t and s(ω, P ) ≤ s(ω′, P ′).

Since ρ(ω, P ) = t ≤ n, f(ω, P ) executes all cycles in ⋃t−1
τ=1 Cτ (ω, P ), but it does not execute

some cycle in Ct(ω, P ). Let N t and Ot be the sets of agents and objects, respectively, that are
remaining at step t of TTC(ω, P ). Let C ∈ Ct(ω, P ) be a cycle which is not executed by f(ω, P ).
Suppose that

C = (i0, o1, i1, o2, . . . , ok−1, ik−1, ok, ik = i0).

Note that, by the definition of TTC, for each agent iℓ ∈ N(C), oℓ+1 = φiℓ
(ω, P ) is agent iℓ’s

most-preferred object in Ot at Piℓ
. Thus,

for all i ∈ N(C), φi(ω, P ) Ri fi(ω, P ). (1)

Because f(ω, P ) does not execute C, there is an agent iℓ ∈ N(C) such that oℓ+1 ̸= fiℓ
(ω, P ).

Without loss of generality, let iℓ = ik (= i0). Thus, (1) implies that o1 Pik
fik

(ω, P ). If
|N(C)| = k = 1, then C = (i0, o1, i1 = i0) and ωi1 = o1 Pi1 fi1(ω, P ), which violates individual
rationality of f . Thus, |N(C)| ≥ 2.

Claim 1. For each iℓ ∈ N(C),

(a) oℓ+1 and oℓ are “adjacent” in Piℓ
, i.e., {o ∈ O \ {oℓ, oℓ+1} | oℓ+1 Piℓ

o Piℓ
oℓ} = ∅; and

5We assume that, if TTC(ω, P ) terminates before step t, then Ct(ω, P ) = ∅.
6Note that, for each problem (ω, P ), (i) ρ(ω, P ) ≤ n + 1, and (ii) ρ(ω, P ) = n + 1 if and only if f(ω, P ) =

φ(ω, P ).
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(b) φiℓ
(P, ω) = oiℓ

.

Proof of Claim 1. First consider agent ik. Toward contradiction, suppose that (a) fails,
i.e., there exists o ∈ O \ {o1, ok} such that o1 Pik

o Pik
ok. Recall that ωik

= ok. Let P ′
ik

be the truncation of (ωik
, Pik

) at o1, i.e., P ′
ik

: . . . , o1, ok, . . . . Let P ′ := (P ′
ik

, P−ik
). Then

s(ω, P ′) < s(ω, P ). Also note that by the definition of TTC, induced cycles remain unchanged,
i.e., for each τ , Cτ (ω, P ′) = Cτ (ω, P ). By the choice of (ω, P ), s(ω, P ′) < s(ω, P ) implies that
ρ(ω, P ′) > ρ(ω, P ) = t. Thus, f(ω, P ′) executes all cycles in ⋃t

τ=1 Cτ (ω, P ′) = ⋃t
τ=1 Cτ (ω, P ).

Since C ∈ Ct(ω, P ), we see that f(ω, P ′) executes C. Thus, fik
(ω, P ′) = o1, which contradicts

truncation-proofness of f . Thus, (a) holds for agent ik. By (1) and individual rationality of f ,
we must have fik

(ω, P ) = ok. Thus, (b) also holds for agent ik.
Now consider agent ik−1. Because fik

(ω, P ) = ok and ok is ik−1’s most-preferred object
in Ot at Pik−1 , we must have ok Pik−1 fik−1(ω, P ). Therefore, a similar argument shows that
{o ∈ O \ {ok−1, ok} | ok Pik−1 o Pik−1 ok−1} = ∅ and fik−1(ω, P ) = ok−1. That is, conditions (a)
and (b) also hold for agent ik−1. Proceeding by induction, one can show that conditions (a) and
(b) hold for each agent iℓ ∈ N(C). ■

Claim 1, which invokes only individual rationality and truncation-proofness, implies that,
when restricted to the agents in N(C), the problem (ω, P ) looks as follows (with agents’ en-
dowments underlined):

Pi1 Pi2 · · · Pik−1 Pik

... ... . . . ... ...

o2 o3 · · · ok o1

o1 o2 · · · ok−1 ok

... ... . . . ... ...

Now consider the problem (ω, P ), where ω := ωi1i2 is the initial allocation obtained from ω

by letting agents i1 and i2 swap their endowments. The following claim says that, for each step
τ ∈ {1, . . . , t − 1}, every cycle that obtains under TTC(ω, P ) also obtains under TTC(ω, P ).

Claim 2. For each τ ∈ {1, . . . , t − 1}, Cτ (ω, P ) ⊆ Cτ (ω, P ).

The intuition behind Claim 2 is as follows. Each cycle in ⋃t−1
τ=1 Cτ (ω, P ) involves only agents

in N\N t, and each agent i ∈ N\N t has the same endowment and the same preferences at the
two problems (ω, P ) and (ω, P ). Thus, C1(ω, P ) ⊆ C1(ω, P ). The remaining inclusions then
follow from a recursive argument. The formal proof is given at the end of this subsection.
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Claim 2 implies that, at φ(ω, P ), no agent iℓ ∈ N(C) is assigned an object that she prefers to
oℓ+1, as any such object is assigned to someone else via some cycle in ⋃t−1

τ=1 Cτ (ω, P ). Thus, by the
definition of TTC, the cycles C ′ := (i1, o2, i1) and C ′′ := (i0, o1, i2, o3, . . . , ok, ik = i0) must clear
at some steps τ ′ ≤ t and τ ′′ ≤ t, respectively, of TTC(ω, P ). That is, C ′, C ′′ ∈ ⋃t

τ=1 Cτ (ω, P ).
Additionally, Claim 2 and the fact that ρ(ω, P ) ≥ t imply that, at f(ω, P ), agent i1 is not

assigned an object that she prefers to ωi1 = o2, as any such object is assigned to someone else
via some cycle in ⋃t−1

τ=1 Cτ (ω, P ). Thus, individual rationality of f implies that fi1(ω, P ) = o2 Pi1

fi1(ω, P ). By endowments-swapping-proofness of f , o3Pi2 fi2(ω, P ). Furthermore, fi2(ω, P ) ̸= o2

implies that o2 Pi2 fi2(ω, P ).
Let P ′

i2 be the truncation of (ωi2 , Pi2) at o3, i.e., P ′
i2 : . . . , o3, o1, o2, . . . . Let P ′ := (P ′

i2 , P−i2).
Then, for the agents in N(C), the problem (ω, P ′) looks as follows (with agents’ endowments
underlined):

P ′
i1 P ′

i2 · · · P ′
ik−1

P ′
ik

... ... . . . ... ...

o2 o3 · · · ok o1

o1 o1 · · · ok−1 ok

... o2
. . . ... ...

... ... . . . ... ...

Observe that s(ω, P ′) < s(ω, P ). Therefore, the choice of (ω, P ) implies that ρ(ω, P ′) >

ρ(ω, P ) = t. Thus, f(ω, P ′) executes all cycles in ⋃t
τ=1 Cτ (ω, P ′). By the definition of TTC,

the algorithms TTC(ω, P ′) and TTC(ω, P ) generate and execute the same cycles, i.e., for each
step τ , Cτ (ω, P ′) = Cτ (ω, P ). In particular, f(ω, P ′) executes C ′′. However, this means that
fi2(ω, P ′) = o3, a violation of truncation-proofness. This completes the proof of Theorem 1
under the assumption that Claim 2 holds.

To prove Claim 2, we prove the following stronger claim.7

Claim 3. For each τ ∈ {1, . . . , t − 1}, the following statements hold:

S1(τ): Cτ (ω, P ) ⊆ Cτ (ω, P ); and

S2(τ): C ∈ Cτ (ω, P ) \ Cτ (ω, P ) implies that O(C) ⊆ Ot.
7To prove Claim 2, some additional care is needed to show that, for any step τ , any additional cycle that

clears during TTC(ω, P ) but not TTC(ω, P ) does not “interfere” with the execution of the remaining cycles in⋃t−1
τ+1 Cτ (ω, P ). This is the content of the second part of Claim 3.
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Proof of Claim 3. Suppose otherwise. We start by introducing some notation. Let τ be the
earliest step at which S1(τ) or S2(τ) fails. Let Oτ (ω, P ) and Oτ (ω, P ) denote the sets of objects
remaining at step τ of TTC(ω, P ) and TTC(ω, P ), respectively. Let N τ (ω, P ) and N τ (ω, P )
denote the corresponding sets of agents. For any nonempty subset X ⊆ O, let topPi

(X) denote
the most-preferred object in X at Pi.8

The choice of τ implies that, for each τ ′ < τ , S1(τ ′) and S1(τ ′) are both true. Therefore,

Oτ (ω, P ) ⊆ Oτ (ω, P ) and Oτ (ω, P )\Ot = Oτ (ω, P )\Ot.

Let i ∈ N τ (ω, P )\N t (= N τ (ω, P )\N t). Because τ < t, the definition of TTC implies
that agent i prefers φi(ω, P ) ∈ Oτ (ω, P )\Ot to any object in Ot. Thus, topPi

(Oτ (ω, P )) ∈
Oτ (ω, P )\Ot. It follows that, for each i ∈ N τ (ω, P )\N t,

topPi
(Oτ (ω, P )) = topPi

(Oτ (ω, P )\Ot) = topPi
(Oτ (ω, P )\Ot) = topPi

(Oτ (ω, P )). (2)

In other words, at step τ , each agent i ∈ N t(ω, P )\N t points to the same object in TTC(ω, P )
and in TTC(ω, P ). We now show that S1(τ) holds. Let C̃ ∈ Cτ (ω, P ) and i ∈ N(C̃). Then
agent i points to φi(ω, P ) on C̃. Because τ < t, we have that i ∈ N τ (ω, P )\N t. Thus, by (2),
(i) agent i also points to φi(ω, P ) at step τ of TTC(ω, P ). Furthermore, i /∈ N t implies that
(ii) ωi = ωi. Since (i) and (ii) hold for each agent i ∈ N(C̃), we have that C̃ ∈ Cτ (ω, P ). Thus,
S1(τ) holds, which means that S2(τ) fails.

Because S2(τ) fails, there is a cycle C ∈ Cτ (ω, P )\Cτ (ω, P ) such that O(C) ⊈ Ot and, hence,
N(C) ⊈ N t. Let j0 ∈ N(C)\N t. Then N(C) ⊆ N τ (ω, P ) ⊆ N τ (ω, P ), which means that
j0 ∈ N τ (ω, P )\N t. Let agent j0 point to object x1 on C. By (2), x1 ∈ O(C)\Ot, which means
that the owner of x1 (at ω and ω) is an agent j1 ∈ N(C)\N t. Repeating the above argument, we
show that, on C, agent j1 points to an object x2 ∈ O(C)\Ot which is owned (at ω and ω) by an
agent j2 ∈ N(C)\N t. A recursive argument shows that all agents on C must belong to N\N t.
Hence, N(C) ⊆ N τ (ω, P )\N t. By (2), (i) every agent on N(C) points to the same object at
step τ during TTC(ω, P ) and TTC(ω, P ). Moreover, (ii) every agent in N(C) is endowed with
the same object at ω and ω. Thus, (i) and (ii) imply that C ∈ Cτ (ω, P ), a contradiction. ■

4 Discussion

Recently, Chen et al. (2024) established that the uniqueness results of Fujinaka and Wakayama
(2018) and Ekici (2024) both remain true if strategy-proofness is weakened to truncation-

8Formally, topPi
(X) ∈ X and, for all o ∈ X, topPi

(X) Ri o.
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invariance.9 That is, they show that TTC is characterized by the following sets of properties:

1. individual rationality, truncation-invariance, and endowments-swapping-proofness; and

2. individual rationality, truncation-invariance, and pair-efficiency.

While Theorem 1 shows that the uniqueness result of Fujinaka and Wakayama (2018) can
be refined by relaxing strategy-proofness to truncation-proofness, the uniqueness result of Ekici
(2024) does not permit a similar refinement. The following example gives a rule, different from
TTC, that still satisfies individual rationality, truncation-proofness, and pair-efficiency.10

Example 1 (Individual rationality, truncation-proofness, and pair-efficiency ≠⇒ TTC).
Let N = {1, 2, 3}. Let (ω∗, P ∗) be a problem with ω∗ = (o1, o2, o3) and

P ∗
1 : o2, o1, o3; P ∗

2 : o3, o2, o1; P ∗
3 : o1, o3, o2.

Let f be the rule defined as follows:

f(ω, P ) =

ω∗, if (ω, P ) = (ω∗, P ∗)

φ(ω, P ), otherwise.

Clearly, φ is pair-efficient and individually rational. It is straightforward to show that f is
truncation-proof. However, f is not truncation-invariant: If P ′

1 : o2, o3, o1, then

f1(ω∗, (P ′
1, P ∗

−1)) = o2 P ∗
1 o1 = f1(ω∗, P ∗),

even though P ′
1 agrees with P ∗

1 on {o ∈ O | o P ′
1 f1(ω∗, P ∗)}. Similarly, f is not endowments-

swapping-proof because agents 1 and 2 prefer to swap their endowments at (ω∗, P ∗). ⋄

Example 1 demonstrates that, in the presence of individual rationality and pair-efficiency,
truncation-proofness is strictly weaker than truncation-invariance.11 It also sheds some light on
the importance of our proof technique, whereby we select a problem that is “minimal” according
to both similarity and size. Chen et al. (2024) showed that, under truncation-invariance, the
original approach of Sethuraman (2016) (see also Ekici and Sethuraman, 2024)—which exploits
only the size of a problem—is sufficient to pin down TTC. Example 1 highlights the difficulty

9A rule f is truncation-invariant if, for each problem (ω, P ), each i ∈ N , and each P ′
i ∈ P,

fi(ω, (P ′
i , P−i)) = fi(ω, P ) whenever P ′

i agrees with Pi on {o ∈ O | o P ′
i fi(ω, P )}.

10This example first appeared in an early draft of Coreno and Feng (2024).
11In contrast, truncation-proofness and truncation-invariance are equivalent in the presence of individual

rationality and either of endowments-swapping-proofness (Theorem 1) or Pareto efficiency (Coreno and Feng,
2024).
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in adapting this argument under truncation-proofness. The difficulty arises because truncation-
proofness precludes agents from manipulating in only one direction: it defends against manip-
ulations from a preference relation Pi to a truncation P ′

i of (ωi, Pi), but it does not prevent
manipulations from P ′

i back to Pi.12

Our analysis suggests a promising direction for future research. Given the wide variety
of rules satisfying individual rationality, truncation-proofness, and pair-efficiency, a complete
characterization of this entire class would be a significant contribution. Clearly, the rule f of
Example 1 is unsatisfactory, as it is Pareto-dominated by φ. It would be interesting to know
whether this class admits other appealing rules.
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