Characterizing TTC via endowments-swapping-proofness and truncation-proofness

Jacob Coreno^{a,∗} Di Feng^b

August 9, 2024

Abstract

In the object reallocation problem introduced by [Shapley and Scarf](#page-9-0) [\(1974\)](#page-9-0), [Fujinaka](#page-8-0) [and Wakayama](#page-8-0) [\(2018\)](#page-8-0) showed that Top Trading Cycles (TTC) is the unique rule satisfying individual rationality, strategy-proofness, and endowments-swapping-proofness. We show that the uniqueness remains true if strategy-proofness is weakened to truncation-proofness.

Keywords: housing markets; Top Trading Cycles; endowment manipulation; truncationproofness.

JEL Classification: C78; D47; D71.

1 Introduction

We consider the *object reallocation problem* introduced by [Shapley and Scarf](#page-9-0) [\(1974\)](#page-9-0). There is a group of agents, each of whom is endowed with a distinct object and equipped with strict preferences over all objects. An allocation is any redistribution of objects such that each agent receives one object. A *rule* specifies how objects are redistributed given the agents' endowments and their reported preferences.

[Ma](#page-9-1) [\(1994\)](#page-9-1) showed that only Gale's *Top Trading Cycles (TTC)* rule satisfies individual rationality, strategy-proofness, and Pareto efficiency. Recent papers have shown that the uniqueness remains true under substantially weaker criteria. For example, [Ekici](#page-8-1) [\(2024\)](#page-8-1) demonstrated that Pareto efficiency can be weakened to pair efficiency, and [Coreno and Feng](#page-8-2) [\(2024\)](#page-8-2) established

[∗]Correspondence to: Department of Economics, The University of Melbourne, VIC 3010, Australia.

^aUniversity of Melbourne, Australia. Contact: [jacob.coreno@unimelb.edu.au.](mailto:jacob.coreno@unimelb.edu.au)

^bDongbei University of Finance and Economics, China. Contact: [dfeng@dufe.edu.cn.](mailto:dfeng@dufe.edu.cn)

that strategy-proofness can be relaxed to truncation-proofness.^{[1](#page-1-0)} In another direction, [Fujinaka](#page-8-0) [and Wakayama](#page-8-0) [\(2018\)](#page-8-0) provided an alternative characterization by replacing Pareto efficiency with a (logically unrelated) incentive property, endowments-swapping-proofness.

In this note we characterize TTC through individual rationality, truncation-proofness, and endowments-swapping-proofness. Thus, we generalize the result of [Fujinaka and Wakayama](#page-8-0) [\(2018\)](#page-8-0) by weakening strategy-proofness to truncation-proofness. Additionally, we show that the result of [Ekici](#page-8-1) [\(2024\)](#page-8-1) cannot be generalized in the same way: there are other rules satisfying individual rationality, truncation-proofness, and pair efficiency.

2 Preliminaries

Let $N \coloneqq \{1, \ldots, n\}$ be a finite set of *agents*, and *O* a set of *objects* with $|O| = n$. An *allocation* is a bijection $\mu : N \to O$. Let A denote the set of allocations. For each $\mu \in A$ and each $i \in N$, μ_i denotes agent *i*'s *assignment* at μ , i.e., $\mu_i = \mu(i)$. Let $P = (P_i)_{i \in N}$ be a preference profile over O , where P_i denotes the (strict) preference of agent i . The weak preference relation associated with P_i is denoted by R_i ^{[2](#page-1-1)} Let P be the set of all strict preferences. We use the standard notation (P'_i, P_{-i}) to denote the profile obtained from *P* by replacing agent *i*'s preference relation P_i with $P'_i \in \mathcal{P}$. A *problem* is a pair $(\omega, P) \in \mathcal{A} \times \mathcal{P}^N$, where $\omega = (\omega_i)_{i \in N}$ is an *initial allocation*. For each $i \in N$, we say that object ω_i is agent *i*'s *endowment* or that agent *i* is the *owner* of object ω_i . A *rule* is a function $f : \mathcal{A} \times \mathcal{P}^N \to \mathcal{A}$ that associates with each problem (ω, P) an allocation $f(\omega, P)$. For each $i \in N$, $f_i(\omega, P)$ denotes agent *i*'s assignment at *f*(ω , *P*). Let (ω, P) be a problem and $i, j \in N$. Denote by ω^{ij} the initial allocation obtained from ω by letting agents *i* and *j* swap their endowments.^{[3](#page-1-2)} We say that $P'_i \in \mathcal{P}$ is a *truncation* strategy for (ω_i, P_i) if (i) $\{o \in O \mid o \; P'_i \; \omega_i\} \subseteq \{o \in O \mid o \; P_i \; \omega_i\}$, and (ii) P'_i agrees with P_i on $O \setminus \{\omega_i\}$, i.e., $P'_i|_{O \setminus \{\omega_i\}} = P_i|_{O \setminus \{\omega_i\}}$.^{[4](#page-1-3)} Moreover, P'_i is the *truncation of* (ω_i, P_i) at x if, in addition, $\{o \in O \mid o \, P'_i \, \omega_i\} = \{o \in O \mid o \, R_i \, x\}$ (i.e., P'_i ranks ω_i immediately below object x). Denote the set of all truncation strategies for (ω_i, P_i) by $\mathcal{T}(\omega_i, P_i)$.

We introduce four properties of rules that are central to our analysis. A rule *f* is **individually rational** if, for each (ω, P) and each *i*, $f_i(\omega, P)$ $R_i \omega_i$. **truncation-proof** if, for each (ω, P) , each i, and each $P'_i \in \mathcal{T}(\omega_i, P_i)$, $f_i(\omega, P)R_if_i(\omega, (P'_i, P_{-i}))$. **endowments-swapping-proof** if, for each (ω, P) , there is no pair $\{i, j\}$ of agents such that *f*_{*i*}(ω^{ij} , *P*) *P_i f*_{*i*}(ω , *P*) and *f*_{*j*}(ω^{ij} , *P*) *P_j f_j*(ω , *P*).

¹A rule is *truncation-proof* if no agent can manipulate by "truncating" her list of acceptable objects, i.e., elevating her own object in her preference list while preserving the original ordering of all other objects.

²That is, for all $a, b \in O$, $a R_i b$ means that $a P_i b$ or $a = b$.

³That is, $\omega^{ij} \in A$ is such that $\omega_i^{ij} = \omega_j$, $\omega_j^{ij} = \omega_i$, and, for each $k \in N \setminus \{i, j\}$, $\omega_k^{ij} = \omega_k$.

⁴For each $X \subseteq O$, $P_i|_X$ is the restriction of P_i to X . Formally, $P_i|_X = P_i \cap (X \times X)$.

pair-efficient if, for each (ω, P) , there is no pair $\{i, j\}$ of agents such that $f_i(\omega, P) P_j f_j(\omega, P)$ and $f_j(\omega, P)$ P_i $f_i(\omega, P)$.

Top Trading Cycles

Let φ denote the *Top Trading Cycles (TTC) rule*. For each problem (ω, P) , $\varphi(\omega, P)$ is the allocation determined by the following *TTC algorithm* at (ω, P) , which we call $TTC(\omega, P)$.

Algorithm: $TTC(\omega, P)$.

Step τ (\geq 1): Each agent points to her most-preferred remaining object given *P*. Each remaining object points to its owner given *ω*. There exists at least one *cycle*. *Execute* all cycles by assigning each agent involved in a cycle the object to which she points. Remove all objects involved in a cycle. If some objects remain, then proceed to step $\tau + 1$.

Termination: The algorithm terminates (in at most *n* steps) when no object remains.

3 The main result

Theorem 1. *A rule f is* **individually rational***,* **truncation-proof***, and* **endowments***swapping-proof* if and only if $f = \varphi$.

Proof of Theorem [1](#page-2-0)

It suffices to prove the uniqueness (only if) part of the theorem. Toward contradiction, suppose that *f* satisfies the stated properties but $f \neq \varphi$. We start by selecting a problem which is "minimal" according to some criteria. As in [Coreno and Feng](#page-8-2) [\(2024\)](#page-8-2), we simultaneously exploit the notions of "size" from [Sethuraman](#page-9-2) [\(2016\)](#page-9-2) and "similarity" from [Ekici](#page-8-1) [\(2024\)](#page-8-1).

Size: The *size* of a problem (ω, P) is $s(\omega, P) = \sum_{i \in N} |\{o \in O \mid o R_i \omega_i\}|$.

For each problem (ω, P) and each $t \in \mathbb{N}$, let $\mathcal{C}_t(\omega, P)$ be the set of cycles that obtain at step *t* of $TTC(\omega, P)$.^{[5](#page-3-0)} For any cycle *C*, let $N(C)$ and $O(C)$ be the sets of agents and objects, respectively, that are involved in *C*. We say that an allocation μ *executes* C if, for each $i \in N(C)$, μ_i is the object to which *i* points on *C*; otherwise, we say that μ *does not execute C*. **Similarity:** The *similarity* between *f* and φ is a function $\rho : \mathcal{A} \times \mathcal{P}^N \to \{1, \ldots, n+1\}$ defined as follows. For each problem (ω, P) , if $f(\omega, P) = \varphi(\omega, P)$, then $\rho(\omega, P) = n + 1$; otherwise,

 $\rho(\omega, P) = \min \{ \tau \in \{1, \ldots, n\} \mid \text{there exists } C \in C_{\tau}(\omega, P) \text{ such that } f(\omega, P) \text{ does not execute } C \}.$

That is, $\rho(\omega, P) = \tau$, where τ is the earliest step of $TTC(\omega, P)$ at which $f(\omega, P)$ does not execute all cycles in $\mathcal{C}_{\tau}(\omega, P)$.^{[6](#page-3-1)}

Select a "minimal" problem: Let $t := min_{(\omega, P)} \rho(\omega, P)$. Then $f \neq \varphi$ implies that $t \leq n$. Among all problems in $\{(\omega, P) \in \mathcal{A} \times \mathcal{P}^N \mid \rho(\omega, P) = t\}$, let (ω, P) be one whose *size* is smallest. Hence, for any problem (ω', P') ,

either (i)
$$
t < \rho(\omega', P')
$$
 or (ii) $\rho(\omega', P') = t$ and $s(\omega, P) \leq s(\omega', P').$

Since $\rho(\omega, P) = t \leq n$, $f(\omega, P)$ executes all cycles in $\bigcup_{\tau=1}^{t-1} C_{\tau}(\omega, P)$, but it does not execute some cycle in $\mathcal{C}_t(\omega, P)$. Let N^t and O^t be the sets of agents and objects, respectively, that are remaining at step *t* of $TTC(\omega, P)$. Let $C \in C_t(\omega, P)$ be a cycle which is not executed by $f(\omega, P)$. Suppose that

$$
C = (i_0, o_1, i_1, o_2, \ldots, o_{k-1}, i_{k-1}, o_k, i_k = i_0).
$$

Note that, by the definition of TTC, for each agent $i_{\ell} \in N(C)$, $o_{\ell+1} = \varphi_{i_{\ell}}(\omega, P)$ is agent i_{ℓ} 's most-preferred object in O^t at P_{i_ℓ} . Thus,

$$
\text{for all } i \in N(C), \quad \varphi_i(\omega, P) \, R_i \, f_i(\omega, P). \tag{1}
$$

Because $f(\omega, P)$ does not execute *C*, there is an agent $i_{\ell} \in N(C)$ such that $o_{\ell+1} \neq f_{i_{\ell}}(\omega, P)$. Without loss of generality, let $i_{\ell} = i_k (= i_0)$. Thus, [\(1\)](#page-3-2) implies that $o_1 P_{i_k} f_{i_k}(\omega, P)$. If $|N(C)| = k = 1$, then $C = (i_0, o_1, i_1 = i_0)$ and $\omega_{i_1} = o_1 P_{i_1} f_{i_1}(\omega, P)$, which violates individual rationality of *f*. Thus, $|N(C)| > 2$.

Claim 1. For each $i_{\ell} \in N(C)$,

(a) $o_{\ell+1}$ and o_{ℓ} are "adjacent" in $P_{i_{\ell}}$, i.e., $\{o \in O \setminus \{o_{\ell}, o_{\ell+1}\} \mid o_{\ell+1} P_{i_{\ell}} o P_{i_{\ell}} o_{\ell}\} = \emptyset$; and

⁵We assume that, if $TTC(\omega, P)$ terminates before step *t*, then $C_t(\omega, P) = \emptyset$.

⁶Note that, for each problem (ω, P) , (i) $\rho(\omega, P) \leq n + 1$, and (ii) $\rho(\omega, P) = n + 1$ if and only if $f(\omega, P) =$ $\varphi(\omega, P)$.

(b) $\varphi_{i_{\ell}}(P,\omega) = o_{i_{\ell}}.$

Proof of Claim [1](#page-3-3). First consider agent i_k . Toward contradiction, suppose that (a) fails, i.e., there exists $o \in O \setminus \{o_1, o_k\}$ such that $o_1 P_{i_k}$ o P_{i_k} o_k . Recall that $\omega_{i_k} = o_k$. Let P'_{i_k} be the truncation of (ω_{i_k}, P_{i_k}) at o_1 , i.e., $P'_{i_k} : \ldots, o_1, o_k, \ldots$ Let $P' := (P'_{i_k}, P_{-i_k})$. Then $s(\omega, P') < s(\omega, P)$. Also note that by the definition of TTC, induced cycles remain unchanged, i.e., for each τ , $\mathcal{C}_{\tau}(\omega, P') = \mathcal{C}_{\tau}(\omega, P)$. By the choice of (ω, P) , $s(\omega, P') < s(\omega, P)$ implies that $\rho(\omega, P') > \rho(\omega, P) = t$. Thus, $f(\omega, P')$ executes all cycles in $\bigcup_{\tau=1}^t C_\tau(\omega, P') = \bigcup_{\tau=1}^t C_\tau(\omega, P)$. Since $C \in \mathcal{C}_t(\omega, P)$, we see that $f(\omega, P')$ executes *C*. Thus, $f_{i_k}(\omega, P') = o_1$, which contradicts truncation-proofness of f. Thus, (a) holds for agent i_k . By [\(1\)](#page-3-2) and individual rationality of f, we must have $f_{i_k}(\omega, P) = o_k$. Thus, (b) also holds for agent i_k .

Now consider agent i_{k-1} . Because $f_{i_k}(\omega, P) = o_k$ and o_k is i_{k-1} 's most-preferred object in O^t at $P_{i_{k-1}}$, we must have $o_k P_{i_{k-1}} f_{i_{k-1}}(\omega, P)$. Therefore, a similar argument shows that $\{o \in O \setminus \{o_{k-1}, o_k\} \mid o_k P_{i_{k-1}} o P_{i_{k-1}} o_{k-1}\} = \emptyset$ and $f_{i_{k-1}}(\omega, P) = o_{k-1}$. That is, conditions (a) and (b) also hold for agent i_{k-1} . Proceeding by induction, one can show that conditions (a) and (b) hold for each agent $i_{\ell} \in N(C)$.

Claim [1,](#page-3-3) which invokes only individual rationality and truncation-proofness, implies that, when restricted to the agents in $N(C)$, the problem (ω, P) looks as follows (with agents' endowments underlined):

Now consider the problem $(\overline{\omega}, P)$, where $\overline{\omega} := \omega^{i_1 i_2}$ is the initial allocation obtained from ω by letting agents i_1 and i_2 swap their endowments. The following claim says that, for each step $\tau \in \{1, \ldots, t-1\}$, every cycle that obtains under $TTC(\omega, P)$ also obtains under $TTC(\overline{\omega}, P)$. *Claim* 2*.* For each $\tau \in \{1, \ldots, t-1\}$, $C_{\tau}(\omega, P) \subseteq C_{\tau}(\overline{\omega}, P)$.

The intuition behind Claim [2](#page-4-0) is as follows. Each cycle in $\bigcup_{\tau=1}^{t-1} C_{\tau}(\omega, P)$ involves only agents in $N\backslash N^t$, and each agent $i \in N\backslash N^t$ has the same endowment and the same preferences at the two problems (ω, P) and $(\overline{\omega}, P)$. Thus, $\mathcal{C}_1(\omega, P) \subseteq \mathcal{C}_1(\overline{\omega}, P)$. The remaining inclusions then follow from a recursive argument. The formal proof is given at the end of this subsection.

Claim [2](#page-4-0) implies that, at $\varphi(\overline{\omega}, P)$, no agent $i_{\ell} \in N(C)$ is assigned an object that she prefers to $o_{\ell+1}$, as any such object is assigned to someone else via some cycle in $\bigcup_{\tau=1}^{t-1} C_\tau(\overline{\omega}, P)$. Thus, by the definition of TTC, the cycles $C' \coloneqq (i_1, o_2, i_1)$ and $C'' \coloneqq (i_0, o_1, i_2, o_3, \ldots, o_k, i_k = i_0)$ must clear at some steps $\tau' \leq t$ and $\tau'' \leq t$, respectively, of $TTC(\overline{\omega}, P)$. That is, $C', C'' \in \bigcup_{\tau=1}^t C_\tau(\overline{\omega}, P)$.

Additionally, Claim [2](#page-4-0) and the fact that $\rho(\overline{\omega}, P) \ge t$ imply that, at $f(\overline{\omega}, P)$, agent i_1 is not assigned an object that she prefers to $\overline{\omega}_{i_1} = o_2$, as any such object is assigned to someone else via some cycle in $\bigcup_{\tau=1}^{t-1} C_{\tau}(\overline{\omega}, P)$. Thus, individual rationality of *f* implies that $f_{i_1}(\overline{\omega}, P) = o_2 P_{i_1}$ $f_{i_1}(\omega, P)$. By endowments-swapping-proofness of f , $o_3 P_{i_2} f_{i_2}(\overline{\omega}, P)$. Furthermore, $f_{i_2}(\overline{\omega}, P) \neq o_2$ implies that $o_2 P_{i_2} f_{i_2}(\overline{\omega}, P)$.

Let P'_{i_2} be the truncation of $(\overline{\omega}_{i_2}, P_{i_2})$ at o_3 , i.e., $P'_{i_2} : \ldots, o_3, o_1, o_2, \ldots$ Let $P' := (P'_{i_2}, P_{-i_2})$. Then, for the agents in $N(C)$, the problem $(\overline{\omega}, P')$ looks as follows (with agents' endowments underlined):

Observe that $s(\overline{\omega}, P') < s(\omega, P)$. Therefore, the choice of (ω, P) implies that $\rho(\overline{\omega}, P') >$ $\rho(\omega, P) = t$. Thus, $f(\overline{\omega}, P')$ executes all cycles in $\bigcup_{\tau=1}^t C_\tau(\overline{\omega}, P')$. By the definition of TTC, the algorithms $TTC(\overline{\omega}, P')$ and $TTC(\overline{\omega}, P)$ generate and execute the same cycles, i.e., for each step τ , $\mathcal{C}_{\tau}(\overline{\omega}, P') = \mathcal{C}_{\tau}(\overline{\omega}, P)$. In particular, $f(\overline{\omega}, P')$ executes C'' . However, this means that $f_{i_2}(\overline{\omega}, P') = o_3$, a violation of truncation-proofness. This completes the proof of Theorem [1](#page-2-0) under the assumption that Claim [2](#page-4-0) holds.

To prove Claim [2,](#page-4-0) we prove the following stronger claim.[7](#page-5-0)

Claim 3*.* For each $\tau \in \{1, \ldots, t-1\}$, the following statements hold:

 $S_1(\tau)$: $\mathcal{C}_{\tau}(\omega, P) \subseteq \mathcal{C}_{\tau}(\overline{\omega}, P)$; and

 $S_2(\tau)$: $\overline{C} \in \mathcal{C}_{\tau}(\overline{\omega}, P) \setminus \mathcal{C}_{\tau}(\omega, P)$ implies that $O(\overline{C}) \subseteq O^t$.

⁷To prove Claim [2,](#page-4-0) some additional care is needed to show that, for any step τ , any additional cycle that clears during $TTC(\overline{\omega}, P)$ but not $TTC(\omega, P)$ does not "interfere" with the execution of the remaining cycles in $\bigcup_{\tau+1}^{t-1} C_{\tau}(\omega, P)$. This is the content of the second part of Claim [3.](#page-5-1)

Proof of Claim [3](#page-5-1). Suppose otherwise. We start by introducing some notation. Let *τ* be the earliest step at which $S_1(\tau)$ or $S_2(\tau)$ fails. Let $O^{\tau}(\omega, P)$ and $O^{\tau}(\overline{\omega}, P)$ denote the sets of objects remaining at step τ of $TTC(\omega, P)$ and $TTC(\overline{\omega}, P)$, respectively. Let $N^{\tau}(\omega, P)$ and $N^{\tau}(\overline{\omega}, P)$ denote the corresponding sets of agents. For any nonempty subset $X \subseteq O$, let $top_{P_i}(X)$ denote the most-preferred object in *X* at P_i ^{[8](#page-6-0)}

The choice of τ implies that, for each $\tau' < \tau$, $S_1(\tau')$ and $S_1(\tau')$ are both true. Therefore,

$$
O^{\tau}(\overline{\omega}, P) \subseteq O^{\tau}(\omega, P)
$$
 and $O^{\tau}(\overline{\omega}, P) \setminus O^t = O^{\tau}(\omega, P) \setminus O^t$.

Let $i \in N^{\tau}(\omega, P) \backslash N^t$ (= $N^{\tau}(\overline{\omega}, P) \backslash N^t$). Because $\tau < t$, the definition of TTC implies that agent *i* prefers $\varphi_i(\omega, P) \in O^{\tau}(\omega, P) \backslash O^t$ to any object in O^t . Thus, $\text{top}_{P_i}(O^{\tau}(\omega, P)) \in$ $O^{\tau}(\omega, P) \backslash O^t$. It follows that, for each $i \in N^{\tau}(\omega, P) \backslash N^t$,

$$
\text{top}_{P_i}(O^{\tau}(\omega, P)) = \text{top}_{P_i}(O^{\tau}(\omega, P) \setminus O^t) = \text{top}_{P_i}(O^{\tau}(\overline{\omega}, P) \setminus O^t) = \text{top}_{P_i}(O^{\tau}(\overline{\omega}, P)).
$$
 (2)

In other words, at step τ , each agent $i \in N^t(\omega, P) \backslash N^t$ points to the same object in TTC(ω, P) and in TTC($\overline{\omega}, P$). We now show that $S_1(\tau)$ holds. Let $\tilde{C} \in C_\tau(\omega, P)$ and $i \in N(\tilde{C})$. Then agent *i* points to $\varphi_i(\omega, P)$ on \tilde{C} . Because $\tau < t$, we have that $i \in N^{\tau}(\omega, P) \backslash N^t$. Thus, by [\(2\)](#page-6-1), (i) agent *i* also points to $\varphi_i(\omega, P)$ at step τ of TTC($\overline{\omega}, P$). Furthermore, $i \notin N^t$ implies that (ii) $\omega_i = \overline{\omega}_i$. Since (i) and (ii) hold for each agent $i \in N(\tilde{C})$, we have that $\tilde{C} \in \mathcal{C}_{\tau}(\overline{\omega}, P)$. Thus, $S_1(\tau)$ holds, which means that $S_2(\tau)$ fails.

Because $S_2(\tau)$ fails, there is a cycle $\overline{C} \in \mathcal{C}_{\tau}(\overline{\omega}, P) \backslash \mathcal{C}_{\tau}(\omega, P)$ such that $O(\overline{C}) \nsubseteq O^t$ and, hence, $N(\overline{C}) \nsubseteq N^t$. Let $j_0 \in N(\overline{C}) \backslash N^t$. Then $N(\overline{C}) \subseteq N^{\tau}(\overline{\omega}, P) \subseteq N^{\tau}(\omega, P)$, which means that $j_0 \in N^{\tau}(\omega, P) \backslash N^t$. Let agent j_0 point to object x_1 on \overline{C} . By $(2), x_1 \in O(\overline{C}) \backslash O^t$ $(2), x_1 \in O(\overline{C}) \backslash O^t$, which means that the owner of x_1 (at ω and $\overline{\omega}$) is an agent $j_1 \in N(\overline{C})\backslash N^t$. Repeating the above argument, we show that, on \overline{C} , agent j_1 points to an object $x_2 \in O(\overline{C})\backslash O^t$ which is owned (at ω and $\overline{\omega}$) by an agent $j_2 \in N(\overline{C}) \backslash N^t$. A recursive argument shows that all agents on \overline{C} must belong to $N \backslash N^t$. Hence, $N(\overline{C}) \subseteq N^{\tau}(\omega, P) \backslash N^t$. By [\(2\)](#page-6-1), (i) every agent on $N(\overline{C})$ points to the same object at step τ during $TTC(\omega, P)$ and $TTC(\overline{\omega}, P)$. Moreover, (ii) every agent in $N(\overline{C})$ is endowed with the same object at ω and $\overline{\omega}$. Thus, (i) and (ii) imply that $\overline{C} \in \mathcal{C}_{\tau}(\omega, P)$, a contradiction.

4 Discussion

Recently, [Chen et al.](#page-8-3) [\(2024\)](#page-8-3) established that the uniqueness results of [Fujinaka and Wakayama](#page-8-0) [\(2018\)](#page-8-0) and [Ekici](#page-8-1) [\(2024\)](#page-8-1) both remain true if strategy-proofness is weakened to truncation-

⁸Formally, $top_{P_i}(X) \in X$ and, for all $o \in X$, $top_{P_i}(X) R_i o$.

invariance.^{[9](#page-7-0)} That is, they show that TTC is characterized by the following sets of properties:

- 1. individual rationality, truncation-invariance, and endowments-swapping-proofness; and
- 2. individual rationality, truncation-invariance, and pair-efficiency.

While Theorem [1](#page-2-0) shows that the uniqueness result of [Fujinaka and Wakayama](#page-8-0) [\(2018\)](#page-8-0) can be refined by relaxing strategy-proofness to truncation-proofness, the uniqueness result of [Ekici](#page-8-1) [\(2024\)](#page-8-1) does not permit a similar refinement. The following example gives a rule, different from TTC, that still satisfies individual rationality, truncation-proofness, and pair-efficiency.^{[10](#page-7-1)}

Example 1 (Individual rationality, truncation-proofness, and pair-efficiency \Rightarrow TTC). Let $N = \{1, 2, 3\}$. Let (ω^*, P^*) be a problem with $\omega^* = (o_1, o_2, o_3)$ and

$$
P_1^*: o_2, o_1, o_3; P_2^*: o_3, o_2, o_1; P_3^*: o_1, o_3, o_2.
$$

Let f be the rule defined as follows:

$$
f(\omega, P) = \begin{cases} \omega^*, & \text{if } (\omega, P) = (\omega^*, P^*)\\ \varphi(\omega, P), & \text{otherwise.} \end{cases}
$$

Clearly, φ is pair-efficient and individually rational. It is straightforward to show that *f* is truncation-proof. However, f is not truncation-invariant: If P'_1 : o_2 , o_3 , o_1 , then

$$
f_1(\omega^*, (P'_1, P_{-1}^*)) = o_2 P_1^* o_1 = f_1(\omega^*, P^*),
$$

even though P'_1 agrees with P_1^* on $\{o \in O \mid o \, P'_1 \, f_1(\omega^*, P^*)\}$. Similarly, f is not endowmentsswapping-proof because agents 1 and 2 prefer to swap their endowments at (*ω* ∗ *, P*[∗]). ⋄

Example [1](#page-7-2) demonstrates that, in the presence of individual rationality and pair-efficiency, truncation-proofness is strictly weaker than truncation-invariance.^{[11](#page-7-3)} It also sheds some light on the importance of our proof technique, whereby we select a problem that is "minimal" according to *both* similarity and size. [Chen et al.](#page-8-3) [\(2024\)](#page-8-3) showed that, under truncation-invariance, the original approach of [Sethuraman](#page-9-2) [\(2016\)](#page-9-2) (see also [Ekici and Sethuraman,](#page-8-4) [2024\)](#page-8-4)—which exploits only the size of a problem—is sufficient to pin down TTC. Example [1](#page-7-2) highlights the difficulty

⁹A rule *f* is **truncation-invariant** if, for each problem (ω, P) , each $i \in N$, and each $P'_i \in \mathcal{P}$, $f_i(\omega, (P'_i, P_{-i})) = f_i(\omega, P)$ whenever P'_i agrees with P_i on $\{o \in O \mid o \, P'_i \, f_i(\omega, P)\}.$

¹⁰This example first appeared in an early draft of [Coreno and Feng](#page-8-2) [\(2024\)](#page-8-2).

¹¹In contrast, truncation-proofness and truncation-invariance are equivalent in the presence of individual rationality and either of endowments-swapping-proofness (Theorem [1\)](#page-2-0) or Pareto efficiency [\(Coreno and Feng,](#page-8-2) [2024\)](#page-8-2).

in adapting this argument under truncation-proofness. The difficulty arises because truncationproofness precludes agents from manipulating in only one direction: it defends against manipulations from a preference relation P_i to a truncation P'_i of (ω_i, P_i) , but it does not prevent manipulations from P'_i back to P_i .^{[12](#page-8-5)}

Our analysis suggests a promising direction for future research. Given the wide variety of rules satisfying individual rationality, truncation-proofness, and pair-efficiency, a complete characterization of this entire class would be a significant contribution. Clearly, the rule *f* of Example [1](#page-7-2) is unsatisfactory, as it is Pareto-dominated by φ . It would be interesting to know whether this class admits other appealing rules.

5 Acknowledgments

We thank Ivan Balbuzanov and Bettina Klaus for their very helpful feedback. This article is based upon work supported by the National Science Foundation under Grant No. DMS-1928930 and by the Alfred P. Sloan Foundation under grant G-2021-16778, while authors were in residence at the Simons Laufer Mathematical Sciences Institute (formerly MSRI) in Berkeley, California, during the Fall 2023 semester.

References

- Chen, Y., Z. Jiao, C. Zhang, and L. Zhang (2024): "The Machiavellian Frontier of Top Trading Cycles," arXiv preprint arXiv:2106.14456.
- Coreno, J., and D. Feng (2024): "Some Characterizations of TTC in Multiple-Object Exchange Problems," arXiv preprint arXiv:2404.04822.
- Ekici, Ö. (2024): "Pair-efficient reallocation of indivisible objects," *Theoretical Economics*, 19, 551–564.
- EKICI, \ddot{O} ., AND J. SETHURAMAN (2024): "Characterizing the TTC rule via pair-efficiency: A short proof," *Economics Letters*, 234, 111459.
- Fujinaka, Y., and T. Wakayama (2018): "Endowments-swapping-proof house allocation," *Games and Economic Behavior*, 111, 187–202.

¹²The difference between these two types of manipulations is significant. For instance, the *efficiency-adjusted deferred acceptance* rule is truncation-proof but it does not prevent manipulations from a truncation P'_i back to *Pi* . See [Shirakawa](#page-9-3) [\(2024\)](#page-9-3) for details.

- Ma, J. (1994): "Strategy-proofness and the strict core in a market with indivisibilities," *International Journal of Game Theory*, 23, 75–83.
- SETHURAMAN, J. (2016): "An alternative proof of a characterization of the TTC mechanism," *Operations Research Letters*, 44, 107–108.
- SHAPLEY, L. S., AND H. SCARF (1974): "On cores and indivisibility," *Journal of Mathematical Economics*, 1, 23–37.
- Shirakawa, R. (2024): "Simple Manipulations in School Choice Mechanisms," Available at SSRN 4128206.