Axiomatic Characterizations of Draft Rules

Jacob Coreno¹ & Ivan Balbuzanov²

^{1,2}Department of Economics, University of Melbourne

SLMath December, 2023

Ex-Spouses Go to Court to Split Beanie Babies

L.A. TIMES ARCHIVES NOV 6 1999 12 AM PT

LAS VEGAS $-$ A divorced couple who couldn't agree on how to split up their Beanie Baby collection were ordered by a judge Friday to divide up the babies one by one in a courtroom.

Maple the Bear was the first to go.

$\lceil \ldots \rceil$

Frances and Harold Mountain divorced four months ago. According to the divorce decree, the parties were supposed to divide their Beanie Baby collection, estimated to be worth between \$2,500 and \$5,000.

But they failed to split up the toys by themselves. After Harold Mountain filed a motion to get his share of the toys, the judge said he had had enough.

"So I told them to bring the Beanie Babies in, spread them out on the floor, and I'll have them pick one each until they're all gone."

Drafts

- A simple and widely-used *round-robin* allocation procedure:
	- **Example 2** agents take turns to choose items from a set of heterogeneous and indivisible objects.
	- ▶ within each *round*, each agent selects a single object in some fixed priority order.
- It sees applications in divorce settlements [\(Brams et al., 2015\)](#page-59-0), course allocation [\(Budish and Cantillon, 2012\)](#page-59-1), estate division [\(Heath, 2018\)](#page-59-2), the assignment of tasks to workers, etc.
- Its most prominent and economically important application is in the allocation of recruits to teams in professional sports leagues.
- There it is universally known as the *draft*.

Drafts in sports

- The draft was first proposed in 1935 by Bert Bell, an owner of the National Football League (NFL)'s Philadelphia Eagles, a perennial underperformer at that time.
- The proposal stipulated that underperforming teams would get higher priority.
- Choosing a player granted a team the exclusive right to negotiate with them.
- **•** The main rationale was to give weaker teams the chance to sign talented players and build more competitive rosters.

Drafts in sports

- Most other (closed) sports leagues have now adopted a draft.
- Universally, the draft's main stated goal is to maintain *competitive* balance among the league's members.
- To that end, the priority ordering in the draft is determined by final league standings in the preceding season with worse performing teams choosing earlier.

Drafts in sports

- Most other (closed) sports leagues have now adopted a draft.
- Universally, the draft's main stated goal is to maintain *competitive* balance among the league's members.
- To that end, the priority ordering in the draft is determined by final league standings in the preceding season with worse performing teams choosing earlier.
- Drafts are economically important:
	- ▶ A league's competitive balance is an important determinant of profitability through ticket and merchandise sales, TV rights, sponsorships, etc.
	- \triangleright Each of the major North American sports leagues boasts multi-billion dollar revenue, massive TV deals, and rapidly rising franchise values.
	- \triangleright Cal Golden Bears have produced two $\#1$ draft picks, including Jared Goff in 2016, who signed a four-year deal with the LA Rams worth \$27.9 million.

Plan and main questions

- We consider the draft as a (centralized) allocation rule, and we analyze it using the axiomatic approach.
- What desirable properties does the draft satisfy? And which of them help to promote competitive balance?
- Could there be better mechanisms that help redress competitive imbalances?

• We give two characterizations of draft rules: they are the only allocation rules satisfying

- We give two characterizations of draft rules: they are the only allocation rules satisfying
- (1) respect for priority (RP), envy-freeness up to one object (EF1), resource monotonicity (RM), and non-wastefulness (NW).
	- \triangleright RP and EF1 are the main properties related to the preservation of competitive balance.

- We give two characterizations of draft rules: they are the only allocation rules satisfying
- (1) respect for priority (RP), envy-freeness up to one object (EF1), resource monotonicity (RM), and non-wastefulness (NW).
	- \triangleright RP and EF1 are the main properties related to the preservation of competitive balance.
- (2) respect for priority (RP) , EF1, RM, NW, in conjunction with (population) consistency (CON), top-object consistency (T-CON), and neutrality (NEU).
	- \triangleright here we obtain RP as a consequence of the other properties.

- We give two characterizations of draft rules: they are the only allocation rules satisfying
- (1) respect for priority (RP), envy-freeness up to one object (EF1), resource monotonicity (RM), and non-wastefulness (NW).
	- \triangleright RP and EF1 are the main properties related to the preservation of competitive balance.
- (2) respect for priority (RP) , EF1, RM, NW, in conjunction with (population) consistency (CON), top-object consistency (T-CON), and neutrality (NEU).
	- \triangleright here we obtain RP as a consequence of the other properties.
	- Although drafts are not strategy-proof (SP) ...
		- \blacktriangleright ... no allocation rule satisfies SP and the competitive-balance properties, RP and EF1.
		- \blacktriangleright ... they satisfy a weaker incentive property that we call *maxmin* strategy-proofness.

Theoretical studies of the draft:

[Rottenberg \(1956\)](#page-59-3), [Kohler and Chandrasekaran \(1971\)](#page-59-4), [Brams and](#page-59-5) [Straffin \(1979\)](#page-59-5), [Brams and King \(2005\)](#page-59-6), [Budish and Cantillon](#page-59-1) [\(2012\)](#page-59-1), [Caragiannis et al. \(2019\)](#page-59-7).

Multiple-object allocation problems:

[Pápai](#page-59-8) [\(2000;](#page-59-8) [2001\)](#page-59-9), [Ehlers and Klaus \(2003\)](#page-59-10), [Hatfield \(2009\)](#page-59-11), [Budish \(2011\)](#page-59-12), [Biró et al.](#page-59-13) [\(2022a;](#page-59-14) [2022b\)](#page-59-13).

Model: Allocations

- $N = \{1, \ldots, n\}$ is a set of *agents*.
- \bullet \circ is a set of (potential) objects.
- $2^{\mathbb{O}}$ is the family of sets of available objects.
- Given $X \subseteq \mathbb{O}$, an *X-allocation* is a profile $A = (A_i)_{i \in N}$ of disjoint subsets of *X*.

Model: Preferences

- **■** Each agent *i* reports *strict preferences* \succ _{*i*} over ①.
	- ▶ $x \succeq_i y$ means $(x \succ_i y$ or $x = y$).
	- ▶ useful to write, e.g., $\succeq_i = a, b, c, \ldots$ to specify agent *i*'s preferences.
	- \blacktriangleright \succeq $=$ $(\succeq_i)_{i \in N}$ denotes a *preference profile*.
- The *pairwise dominance extension* \succeq_i^{PD} of \succeq_i is the partial order on $2^\mathbb{O}$ defined as follows: for all $S, T \subseteq \mathbb{O}$, $S \succeq_i^{PD} T$ iff there is an injection $\mu: T \to S$ such that $\mu(x) \succeq_i x$ for all $x \in T$.

Model: Preferences

- **■** Each agent *i* reports *strict preferences* \succ _{*i*} over ①.
	- ▶ $x \succeq_i y$ means $(x \succ_i y$ or $x = y$).
	- ▶ useful to write, e.g., $\succeq_i = a, b, c, \ldots$ to specify agent *i*'s preferences.
	- \blacktriangleright \succeq $=$ $(\succeq_i)_{i \in N}$ denotes a *preference profile*.
- The *pairwise dominance extension* \succeq_i^{PD} of \succeq_i is the partial order on $2^\mathbb{O}$ defined as follows: for all $S, T \subseteq \mathbb{O}$, $S \succeq_i^{PD} T$ iff there is an injection $\mu: T \to S$ such that $\mu(x) \succeq_i x$ for all $x \in T$.

Example

If $a \succ_i b \succ_i c$, then ${a,b,c} \succ_i^{PD} {a,b} \succ_i^{PD} {a,c} \succ_i^{PD} {a}, {b,c} \succ_i^{PD} {b} \succ_i^{PD} {c} \succ_i^{PD} \emptyset,$ but $\{a\}$ and $\{b, c\}$ are not comparable.

Model: Preferences

- **■** Each agent *i* reports *strict preferences* \succ _{*i*} over ①.
	- ▶ $x \succeq_i y$ means $(x \succ_i y$ or $x = y$).
	- ▶ useful to write, e.g., $\succeq_i = a, b, c, \ldots$ to specify agent *i*'s preferences.
	- \blacktriangleright \succeq $=$ $(\succeq_i)_{i \in N}$ denotes a *preference profile*.
- The *pairwise dominance extension* \succeq_i^{PD} of \succeq_i is the partial order on $2^\mathbb{O}$ defined as follows: for all $S, T \subseteq \mathbb{O}$, $S \succeq_i^{PD} T$ iff there is an injection $\mu: T \to S$ such that $\mu(x) \succeq_i x$ for all $x \in T$.

Remark

The pairwise dominance extension \succeq^{PD}_i is equivalent to both the responsive set extension and the additive utility extension. That is,

$$
\succeq_i^{PD} = \bigcap_{R_i \in \mathcal{R}(\succeq_i)} R_i = \bigcap_{R_i \in \mathcal{A}(\succeq_i)} R_i,
$$

where $\mathcal{R}(\succeq_i)$ (resp. $\mathcal{A}(\succeq_i)$) is the set of responsive (resp. additive) preference relations on 2° consistent with the relation \succeq_i on \circledcirc .

Model: Allocation rules

- A problem (\succeq, X) comprises a preference profile \succeq and a set $X \subseteq \mathbb{O}$.
- An *allocation rule* φ maps each problem (\succeq, X) to an X-allocation $\varphi(\succeq, X)$.
- A priority *π* is a linear order on *N*.
	- ▶ *iπj* means agent *i* has higher priority than *j*.
- The *draft rule associated with* π , φ^{π} , assigns each agent her best remaining object, one at a time, in the order prescribed by *π*; the process repeats once all agents have received an object.^a

a

Model: Allocation rules

- \bullet A *problem* (\succeq , X) comprises a preference profile \succeq and a set $X \subseteq \mathbb{O}$.
- An *allocation rule* φ maps each problem (\succeq, X) to an X-allocation $\varphi(\succeq, X)$.
- A priority *π* is a linear order on *N*.
	- ▶ *iπj* means agent *i* has higher priority than *j*.
- The *draft rule associated with* π , φ^{π} , assigns each agent her best remaining object, one at a time, in the order prescribed by *π*; the process repeats once all agents have received an object.^a

 \mathbb{P}^{a} i.e., φ^{π} maps each problem (\succeq, X) to the allocation $\varphi^{\pi}\left(\succeq, X\right)$ defined as follows:

- **►** Let $f^{\pi}: \mathbb{N} \to N$ denote the *picking sequence associated with* π : *i.e.,* if $i_1 \pi \cdots \pi i_n$, then $(f^{\pi}(t))_{t \in \mathbb{N}} = (i_1, \ldots, i_n, i_1, \ldots, i_n, \ldots)$.
- \blacktriangleright Recursively define a sequence $(s_t)_{t=1}^{|X|}$ of selections by $s_1 = \mathsf{top}_{f^{\pi}(1)}\left(X\right)$ and, for each $t = 2, \ldots, |X|$, $s_t = \text{top}_{f^{\pi}(t)} (X \setminus \{s_1, \ldots, s_{t-1}\})$.
- ▶ For each $i \in N$, set $\varphi_i^{\pi}(\succeq, X) = \{s_t \mid f^{\pi'}(t) = i\}.$

Properties: Fairness

An allocation rule *φ* is

(1) respectful of a priority (RP) if there exists a priority π such that for each problem (\succeq, X) and each agent *i*,

$$
\varphi_i(\succeq, X) \succeq_i^{PD} \varphi_j(\succeq, X)
$$
 whenever $i\pi j$.

 (2) envy-free up to one object (EF1) if for any problem (\succeq, X) and any agents $i, j \in N$, there exists $S \subseteq \varphi_j(\succeq, X)$ such that $|S| \leq 1$ and

$$
\varphi_i(\succeq, X) \succeq_i^{PD} \varphi_j(\succeq, X) \setminus S.
$$

Properties: Fairness

An allocation rule *φ* is

(1) respectful of a priority (RP) if there exists a priority π such that for each problem (\succeq, X) and each agent *i*,

$$
\varphi_i(\succeq, X) \succeq_i^{PD} \varphi_j(\succeq, X)
$$
 whenever $i\pi j$.

 (2) envy-free up to one object (EF1) if for any problem (\succeq, X) and any agents $i, j \in N$, there exists $S \subseteq \varphi_j(\succeq, X)$ such that $|S| \leq 1$ and

$$
\varphi_i(\succeq, X) \succeq_i^{PD} \varphi_j(\succeq, X) \setminus S.
$$

- RP and EF1 are relaxations of envy-freeness (EF) .
- RP is a form of no justified envy: if *i* (possibly) envies j (i.e., $\varphi_i(\succeq, X) \not\ucceq_i^{PD} \varphi_j(\succeq, X)$), then $j\pi i$.
- both properties are closely related to competitive balance.

Properties: Efficiency and solidarity

An allocation rule *φ* is

- (3) efficient (EFF) if for each problem (\succeq, X) , $\varphi(\succeq, X)$ is not Pareto dominated by any *X*-allocation wrt \succ^{PD} .
- (4) non-wasteful (NW) if it always assigns all available objects: for each problem (\succeq, X) , $\bigcup_{i \in N} \varphi_i(\succeq, X) = X$.
- (5) resource monotonic (RM) if

for any preference profile \succ and $X, X' \subseteq \mathbb{O}$.

$$
X \supseteq X' \implies \varphi_i(\succeq, X) \succeq_i^{PD} \varphi_i(\succeq, X') \text{ for all } i \in N.
$$

Proposition 1

Proposition 1

A draft rule φ^π satisfies RP- π , EF1, EFF, and RM.

RP-*π*: if *iπj*, then *i* prefers the object assigned to her in round *k* to the corresponding object assigned to *j*.

Proposition 1

- RP-*π*: if *iπj*, then *i* prefers the object assigned to her in round *k* to the corresponding object assigned to *j*.
- EF1: agent *i* prefers the object assigned to her in round *k* to the object assigned to *j* in round $k + 1$.

Proposition 1

- RP-*π*: if *iπj*, then *i* prefers the object assigned to her in round *k* to the corresponding object assigned to *j*.
- EF1: agent *i* prefers the object assigned to her in round *k* to the object assigned to *j* in round $k + 1$.
- EFF: no trade is beneficial (in a pairwise dominance sense).

Proposition 1

- RP-*π*: if *iπj*, then *i* prefers the object assigned to her in round *k* to the corresponding object assigned to *j*.
- EF1: agent *i* prefers the object assigned to her in round *k* to the object assigned to *j* in round $k + 1$.
- EFF: no trade is beneficial (in a pairwise dominance sense).
- RM: if one more object is added, then at each step the relevant agent picks from a larger pool of objects.

Proposition 1

A draft rule φ^π satisfies RP- π , EF1, EFF, and RM.

- RP-*π*: if *iπj*, then *i* prefers the object assigned to her in round *k* to the corresponding object assigned to *j*.
- EF1: agent *i* prefers the object assigned to her in round *k* to the object assigned to *j* in round $k + 1$.
- EFF: no trade is beneficial (in a pairwise dominance sense).
- RM: if one more obiect is added, then at each step the relevant agent picks from a larger pool of objects.

Characterization 1

An allocation rule *φ* satisfies RP, EF1, NW, and RM iff φ is a draft rule, i.e., there exists a priority π such that $\varphi = \varphi^{\pi}$.

Lemma 1

If φ satisfies RP- π and EF1, then there is an agent $i \in N$ such that

$$
|\varphi_j(\succeq, X)| = |\varphi_i(\succeq, X)| \text{ whenever } j\pi i
$$

and
$$
|\varphi_j(\succeq, X)| = |\varphi_i(\succeq, X)| - 1 \text{ whenever } i\pi j \text{ and } i \neq j.
$$

Lemma 1

If φ satisfies RP- π and EF1, then there is an agent $i \in N$ such that

$$
|\varphi_j(\succeq, X)| = |\varphi_i(\succeq, X)| \text{ whenever } j\pi i
$$

and
$$
|\varphi_j(\succeq, X)| = |\varphi_i(\succeq, X)| - 1 \text{ whenever } i\pi j \text{ and } i \neq j.
$$

• If
$$
i_1\pi \cdots \pi i_n
$$
, then $\mathsf{RP}\text{-}\pi$ implies

$$
|\varphi_{i_1}(\Sigma, X)| \geq |\varphi_{i_2}(\Sigma, X)| \geq \cdots \geq |\varphi_{i_n}(\Sigma, X)|.
$$

• By EF1, for all $i, j \in N$ it holds that

$$
|\varphi_i(\succeq, X)| - |\varphi_j(\succeq, X)| \le 1.
$$

Lemma 2

Suppose φ satisfies RM and that $\varphi(\succeq, X) = \varphi^{\pi}(\succeq, X)$. If $x \in \mathbb{O} \backslash X$ is such that, for all $i \in N$,

$$
y\succ_i x \text{ for each } y\in\varphi_i\left(\succeq,X\right),
$$

then

$$
\varphi_i(\succeq, X) \subseteq \varphi_i(\succeq, X \cup \{x\}) \text{ for each } i \in N.
$$

Lemma 2

Suppose φ satisfies RM and that $\varphi(\succeq, X) = \varphi^{\pi}(\succeq, X)$. If $x \in \mathbb{O} \backslash X$ is such that, for all $i \in N$,

$$
y\succ_i x \text{ for each } y\in\varphi_i\left(\succeq,X\right),
$$

then

$$
\varphi_i\left(\succeq,X\right)\subseteq\varphi_i\left(\succeq,X\cup\{x\}\right) \text{ for each } i\in N.
$$

- i.e., each agent's assigned bundle in the smaller problem is included in her bundle in the larger problem.
- *i*¹ must retain her favorite object *s*1; $\text{otherwise}, \varphi_{i_1}(\succeq, X \cup \{x\}) \npreceq_{i_1}^{PD} \varphi_{i_1}(\succeq, X)$, violating RM.
- Similarly, *i*² must retain her favorite object, etc.

Let $S_k = \{s_1, \ldots, s_k\}$ denote the first k selections under φ^{π} at (\succeq, X) .

- Let $S_k = \{s_1, \ldots, s_k\}$ denote the first k selections under φ^{π} at (\succeq, X) .
- Consider $S_1 = \{s_1\}$:
	- ► Step 1 and NW imply $\varphi_{i_1}(\succeq, S_1) = \{s_1\} = \varphi_{i_1}^{\pi}(\succeq, S_1)$.

$$
\blacktriangleright \text{ Hence } \varphi(\succeq, S_1) = \varphi^{\pi}(\succeq, S_1).
$$

- Let $S_k = \{s_1, \ldots, s_k\}$ denote the first k selections under φ^{π} at (\succ, X) .
- Consider $S_1 = \{s_1\}$:
	- ► Step 1 and NW imply $\varphi_{i_1}(\succeq, S_1) = \{s_1\} = \varphi_{i_1}^{\pi}(\succeq, S_1)$.

$$
\blacktriangleright \text{ Hence } \varphi(\succeq, S_1) = \varphi^{\pi}(\succeq, S_1).
$$

- Consider $S_2 = \{s_1, s_2\}$:
	- ▶ Step 2 implies $\varphi_{i_1}(\succeq, S_1) = \{s_1\} \subseteq \varphi_{i_1}(\succeq, S_2)$.
	- ► By Step 1 and NW, $\varphi_{i_2}(\succeq, S_2) = \{s_2\}.$
	- **►** Hence, φ (\succeq , S_2) = φ ^π (\succeq , S_2).

- Let $S_k = \{s_1, \ldots, s_k\}$ denote the first k selections under φ^{π} at (\succ, X) .
- Consider $S_1 = \{s_1\}$:
	- ► Step 1 and NW imply $\varphi_{i_1}(\succeq, S_1) = \{s_1\} = \varphi_{i_1}^{\pi}(\succeq, S_1)$.

$$
\blacktriangleright \text{ Hence } \varphi(\succeq, S_1) = \varphi^{\pi}(\succeq, S_1).
$$

- Consider $S_2 = \{s_1, s_2\}$:
	- ▶ Step 2 implies $\varphi_{i_1}(\succeq, S_1) = \{s_1\} \subseteq \varphi_{i_1}(\succeq, S_2)$.
	- ► By Step 1 and NW, $\varphi_{i_2}(\succeq, S_2) = \{s_2\}.$
	- **►** Hence, φ (\succeq , S_2) = φ ^π (\succeq , S_2).
- ... and so on.

RP and EF1 promote competitive balance

RP and EF1 are crucial for competitive balance:

RP and EF1 promote competitive balance

RP and EF1 are crucial for competitive balance:

- RP guarantees that no agent envies any agent with lower priority.
	- ▶ Allows leagues to support weaker teams.
	- ▶ Serial dictatorships also satisfy RP (as well as efficiency and strategy-proofness).
	- ▶ But low-priority agents may envy high-priority ones severely.

RP and EF1 promote competitive balance

RP and EF1 are crucial for competitive balance:

- RP guarantees that no agent envies any agent with lower priority.
	- ▶ Allows leagues to support weaker teams.
	- \triangleright Serial dictatorships also satisfy RP (as well as efficiency and strategy-proofness).
	- ▶ But low-priority agents may envy high-priority ones severely.
- EF1 limits the extent to which low-priority agents can envy high-priority agents.
	- ▶ Ensures weaker teams not favored too heavily.
	- ▶ Prevents "over-correction" of the competitive balance and large swings in team rankings.
	- \blacktriangleright Limits incentives to tank.

Properties: Incentives

An allocation rule *φ* is

(6) strategy-proof (SP) if

for each problem (\succeq, X) , each agent i , and each report \succeq'_i ,

$$
\varphi_i(\succeq, X) \succeq_i^{PD} \varphi_i((\succeq'_i, \succeq_{-i}), X).
$$

(7) weakly strategy-proof (WSP) if

for each problem (\succeq, X) and each agent i , there is no report \succeq'_i such that

$$
\varphi_i\left(\left(\geq'_i, \geq_{-i}\right), X\right) \succ_i^{PD} \varphi_i\left(\geq, X\right).
$$

Properties: Incentives

An allocation rule *φ* is

(6) strategy-proof (SP) if

for each problem (\succeq, X) , each agent i , and each report \succeq'_i ,

$$
\varphi_i(\succeq, X) \succeq_i^{PD} \varphi_i((\succeq'_i, \succeq_{-i}), X).
$$

(7) weakly strategy-proof (WSP) if

for each problem (\succeq, X) and each agent i , there is no report \succeq'_i such that

$$
\varphi_i\left(\left(\succeq'_i,\succeq_{-i}\right),X\right)\succ_i^{PD}\varphi_i\left(\succeq,X\right).
$$

Unfortunately, draft rules are not even weakly strategy-proof:

• an agent can benefit by ranking popular objects above unpopular ones she likes more.

No allocation rule can meaningfully improve upon the draft's properties.

Impossibility 1

No allocation rule satisfies RP, EF1, NW, and WSP.

No allocation rule can meaningfully improve upon the draft's properties.

Impossibility 1

No allocation rule satisfies RP, EF1, NW, and WSP.

Impossibility 2

No allocation rule satisfies EF1, EFF, and WSP.

No allocation rule can meaningfully improve upon the draft's properties.

Impossibility 1

No allocation rule satisfies RP, EF1, NW, and WSP.

Impossibility 2

No allocation rule satisfies EF1, EFF, and WSP.

Impossibility 3

If $n = 2$, then no allocation rule satisfies EF1, NW, and SP.

No allocation rule can meaningfully improve upon the draft's properties.

Impossibility 1

No allocation rule satisfies RP, EF1, NW, and WSP.

Impossibility 2

No allocation rule satisfies EF1, EFF, and WSP.

Impossibility 3

If $n = 2$, then no allocation rule satisfies EFT . NW, and SP.

- In Impossibility 1, EF1, NW, and WSP, are indispensable. Does there exist an allocation rule satisfying EF1, NW, and WSP?
- Does Impossibility 3 extend to *n* ≥ 2? We think so, but case-checking becomes unwieldy.

Maxmin strategy-proofness

- Although draft rules are not WSP, they satisfy *maxmin* strategy-proofness (MSP).
- i.e., if an agent evaluates choices based on their worst-possible outcome (i.e., the outcome that would arise if playing against adversarial opponents), then truth-telling is optimal.

Maxmin strategy-proofness

- Although draft rules are not WSP, they satisfy *maxmin* strategy-proofness (MSP).
- i.e., if an agent evaluates choices based on their worst-possible outcome (i.e., the outcome that would arise if playing against adversarial opponents), then truth-telling is optimal.

Theorem

Every draft rule φ^{π} is MSP: for each $X \subseteq \mathbb{O}$, each $i \in N$, each true preference relation \succeq_i , and each additive u_i consistent with \succeq_i ,

$$
\succeq_i \in \arg \max_{\succeq'_i} \left[\min_{\succeq'_{-i}} u_i \left(\varphi_i^{\pi} \left(\left(\succeq'_i, \succeq'_{-i} \right), X \right) \right) \right].
$$

Extension: Variable Populations

- $\bullet \mathbb{N} = \{1, 2, \dots\}$ is a set of *potential agents*.
- $\bullet \mathcal{N} = \{N \subseteq \mathbb{N} \mid 0 < |N| < \infty\}$ denotes all possible sets of agents.
- \bullet A problem is a triple (N, X, \succeq) , where $N \in \mathcal{N}$, $X \subseteq \mathbb{O}$, and \succeq is a preference profile on *X*.

Properties: Consistency

An allocation rule *φ* is

(8) (population) consistent (CON) if, for any problem (N, X, \succeq) and any nonempty set $N' \subsetneq N$, and any $i \in N \backslash N'$,

$$
\varphi_i\left(N\backslash N',X\backslash X',\succeq|_{X\backslash X'}\right)=\varphi_i\left(N,X,\succeq\right),
$$

where $X' = \bigcup_{i \in N'} \varphi_i\left(N, X, \succeq\right)$.

(9) top-object consistent (T-CON) if, for any problem (N, X, \succeq) and any agent $i \in N$,

$$
\varphi_i\left(N, X\backslash X', \succeq |_{X\backslash X'}\right) = \varphi_i\left(N, X, \succeq\right)\backslash X',
$$

where
$$
X' = \bigcup_{i \in N: \varphi_i(\succeq, X) \neq \emptyset} \left\{\text{top}_{\succeq_i} \left(\varphi_i\left(N, X, \succeq\right)\right)\right\}.
$$

Properties: Consistency

An allocation rule *φ* is

(8) (population) consistent (CON) if, for any problem (N, X, \geq) and any nonempty set $N' \subsetneq N$, and any $i \in N \backslash N'$,

$$
\varphi_i\left(N\backslash N',X\backslash X',\succeq|_{X\backslash X'}\right)=\varphi_i\left(N,X,\succeq\right),
$$

where $X' = \bigcup_{i \in N'} \varphi_i\left(N, X, \succeq\right)$.

(9) top-object consistent (T-CON) if, for any problem (N, X, \succeq) and any agent $i \in N$,

$$
\varphi_i\left(N, X\backslash X', \succeq |_{X\backslash X'}\right) = \varphi_i\left(N, X, \succeq\right)\backslash X',
$$

 $\mathsf{where}\,\, X' = \bigcup_{i\in N: \varphi_i(\succeq, X)\neq \emptyset} \Big\{\mathsf{top}_{\succeq_i}\left(\varphi_i\left(N,X,\succeq\right)\right)\Big\}.$

- CON is a well-established property (e.g., [Ergin, 2000;](#page-59-15) [Thomson,](#page-59-16) [2011\)](#page-59-16): it guarantees robustness to nonsimultaneous processing of the *agents*.
- T-CON gives a similar guarantee: it ensures a form of robustness to nonsimultaneous processing of the objects.

Properties: Neutrality

An allocation rule is

(10) neutral (NEU) if, for any problem (N, X, \succeq) , any set $X' \subseteq \mathbb{O}$, and any bijection $\sigma: X \to X'$,

$$
\sigma\left(\varphi\left(N,X,\succeq\right)\right)=\varphi\left(N,X',\succeq^{\sigma}\right),
$$

 σ $(\varphi\,(N,X,\succeq)) = (\sigma\,(\varphi_i\,(N,X,\succeq)))_{i \in N}$ and \succeq^{σ} is the profile obtained from \succeq by relabelling the objects according to σ .¹

 1 i.e., \succeq^σ is the profile on X' such that, for all $i\in N,$

for all $x, y \in X$, $x \succ_i y \iff \sigma(x) \succ_i \sigma(y)$.

Properties: Neutrality

An allocation rule is

(10) neutral (NEU) if, for any problem (N, X, \succeq) , any set $X' \subseteq \mathbb{O}$, and any bijection $\sigma: X \to X'$,

$$
\sigma\left(\varphi\left(N,X,\succeq\right)\right)=\varphi\left(N,X',\succeq^{\sigma}\right),
$$

 σ $(\varphi\,(N,X,\succeq)) = (\sigma\,(\varphi_i\,(N,X,\succeq)))_{i \in N}$ and \succeq^{σ} is the profile obtained from \succeq by relabelling the objects according to σ .¹

- NEU ensures that the outcome of the allocation rule is independent of the "identity" of the objects (e.g., it rules out the *father-son rule* in the AFL)
- it plays a mostly technical role here, however.

 1 i.e., \succeq^σ is the profile on X' such that, for all $i\in N,$

for all $x, y \in X$, $x \succ_i y \iff \sigma(x) \succ_i \sigma(y)$.

Another Characterization.

Characterization 2

An allocation rule *φ* satisfies EF1, EFF, RM, NEU, CON, and T-CON iff φ is a draft rule, i.e., there exists a priority π such that $\varphi = \varphi^\pi.$

Another Characterization.

Characterization 2

```
An allocation rule φ satisfies EF1, EFF, RM, NEU, CON, and T-CON iff
\varphi is a draft rule, i.e., there exists a priority \pi such that \varphi = \varphi^\pi.
```
- here a priority is derived even *without* assuming RP.
- the proof consists of two lemmas:

Another Characterization.

Characterization 2

An allocation rule *φ* satisfies EF1, EFF, RM, NEU, CON, and T-CON iff φ is a draft rule, i.e., there exists a priority π such that $\varphi = \varphi^\pi.$

- **•** here a priority is derived even without assuming RP.
- the proof consists of two lemmas:
- (1) If φ is an allocation rule satisfying EF1, EFF, RM, NEU, and CON, then *φ* agrees with a serial dictatorship on single-unit problems: i.e., there is a priority π such that $\varphi(N, X, \succeq) = \varphi^{\pi}(N, X, \succeq)$ whenever $|X| \leq |N|$.
- (2) Suppose φ and π are such that $\varphi(N, X, \succeq) = \varphi^{\pi}(N, X, \succeq)$ whenever $|X| \leq |N|$. If φ satisfies RM and T-CON, then $\varphi(N, X, \succeq) = \varphi^{\pi}(N, X, \succeq)$ for all problems.

Extension: Unacceptable Objects

Setup is the same as the fixed population setup, except:

- each preference relation \succeq_i is defined on $\mathbb{O} \cup \{\omega\}$, where ω is the null object.
- the set of *acceptable* objects at \succeq_i is $U(\succeq_i) = \{x \in \mathbb{O} \mid x \succ_i \omega\}.$
- the *draft rule associated with* π is the allocation rule φ^{π} which assigns agents their top-ranked remaining (possibly null) object, one at a time, in the order prescribed by *π*.

Properties of Allocation Rules

An allocation rule *φ* is

- (1) non-wasteful (NW) if for any problem (\succeq, X) , all *acceptable* objects are allocated.
- (2) individually rational (IR) if

for any problem (\succeq, X) , no agent is assigned an unacceptable object.

(3) truncation invariant (TI) if²

for any problem (\succeq, X) and each agent $i \in N$,

$$
\varphi_i\left(\succeq, X\right) = \varphi_i\left(\left(\succeq'_i, \succeq_{-i}\right), X\right)
$$

whenever \succeq'_i is a truncation of \succeq_i such that $\varphi_i\left(\succeq, X\right) \subseteq U\left(\succeq'_i\right)$.

 2 TI is implied by IR together with *truncation-proofness* (TP) and extension-proofness (EP).

Characterization

Characterization 3

An allocation rule *φ* is

- non-wasteful (NW),
- o resource monotonic (RM),
- \bullet respectful of a priority (RP),
- envy-free up to one object (EF1),
- \bullet individually rational (IR), and
- \bullet truncation invariant (TI)

if and only if

φ is a draft rule.

Summary

- Our axiomatic characterizations of the draft suggest that its properties are suitable for redressing competitive imbalances in sports leagues.
- The draft is not strategy-proof, but truth-telling is optimal if agents are maxmin utility maximizers.
- It is impossible to meaningfully improve on the draft's properties.

Thank you! \odot

Biró, P., F. Klijn, and S. Pápai (2022a): "Balanced Exchange in a Multi-Unit Shapley-Scarf Market," mimeo.

(2022b): "Serial Rules in a Multi-Unit Shapley-Scarf Market," Games and Economic Behavior, 136, 428–453.

- BRAMS, S. J., D. M. KILGOUR, AND C. KLAMLER (2015): "How to Divide Things Fairly," Mathematics Magazine, 88, 338– 348.
- BRAMS, S. J., AND D. L. KING (2005): "Efficient Fair Division: Help the Worst Off or Avoid Envy?" Rationality and Society, 17, 387–421.
- Brams, S. J., and P. D. Straffin, Jr (1979): "Prisoners' Dilemma and Professional Sports Drafts," American Mathematical Monthly, 86, 80–88.
- Budish, E. (2011): "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes," Journal of Political Economy, 119, 1061–1103.
- Budish, E., and E. Cantillon (2012): "The Multi-Unit Assignment Problem: Theory and Evidence from Course Allocation at Harvard," American Economic Review, 102, 2237–71.
- Caragiannis, I., D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang (2019): "The Unreasonable Fairness of Maximum Nash Welfare," ACM Transactions on Economics and Computation, 7, 1–32.
- Ehlers, L., and B. Klaus (2003): "Coalitional Strategy-Proof and Resource-Monotonic Solutions for Multiple Assignment Problems," Social Choice and Welfare, 21, 265–280.
- Ergin, H. I. (2000): "Consistency in house allocation problems," Journal of mathematical economics, 34, 77–97.
- HATFIELD, J. W. (2009): "Strategy-Proof, Efficient, and Nonbossy Quota Allocations," Social Choice and Welfare, 33, 505– 515.
- HEATH, T. (2018): "How to Divyy Up the Inheritance—and Keep the Family Together," Washington Post, [https://www.](https://www.washingtonpost.com/business/economy/how-to-divvy-up-the-inheritance--and-keep-the-family-together/2018/06/01/7e6c8658-642e-11e8-a69c-b944de66d9e7_story.html) [washingtonpost.com/business/economy/how-to-divvy-up-the-inheritance--and-keep-the-family-together/](https://www.washingtonpost.com/business/economy/how-to-divvy-up-the-inheritance--and-keep-the-family-together/2018/06/01/7e6c8658-642e-11e8-a69c-b944de66d9e7_story.html) [2018/06/01/7e6c8658-642e-11e8-a69c-b944de66d9e7_story.html](https://www.washingtonpost.com/business/economy/how-to-divvy-up-the-inheritance--and-keep-the-family-together/2018/06/01/7e6c8658-642e-11e8-a69c-b944de66d9e7_story.html), 1 June 2018.

KOHLER, D. A., AND R. CHANDRASEKARAN (1971): "A Class of Sequential Games," Operations Research, 19, 270–277.

PÁPAI, S. (2000): "Strategyproof Multiple Assignment Using Quotas," Review of Economic Design, 5, 91-105.

(2001): "Strategyproof and Nonbossy Multiple Assignments," Journal of Public Economic Theory, 3, 257–271.

ROTTENBERG, S. (1956): "The Baseball Players' Labor Market," Journal of Political Economy, 64, 242-258.

Thomson, W. (2011): "Consistency and its converse: an introduction," Review of Economic Design, 15, 257–291.