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Drafts

A simple and widely-used round-robin allocation procedure:
▶ agents take turns to choose items from a set of heterogeneous and

indivisible objects.
▶ within each round, each agent selects a single object in some fixed

priority order.

It sees applications in divorce settlements (Brams et al., 2015),
course allocation (Budish and Cantillon, 2012), estate division
(Heath, 2018), the assignment of tasks to workers, etc.

Its most prominent and economically important application is in the
allocation of recruits to teams in professional sports leagues.

There it is universally known as the draft.

3



Drafts in sports

The draft was first proposed in 1935 by Bert Bell, an owner of the
National Football League (NFL)’s Philadelphia Eagles, a perennial
underperformer at that time.

The proposal stipulated that underperforming teams would get
higher priority.

Choosing a player granted a team the exclusive right to negotiate
with them.

The main rationale was to give weaker teams the chance to sign
talented players and build more competitive rosters.
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Drafts in sports
Most other (closed) sports leagues have now adopted a draft.

Universally, the draft’s main stated goal is to maintain competitive
balance among the league’s members.

To that end, the priority ordering in the draft is determined by final
league standings in the preceding season with worse performing
teams choosing earlier.

Drafts are economically important:
▶ A league’s competitive balance is an important determinant of

profitability through ticket and merchandise sales, TV rights,
sponsorships, etc.

▶ Each of the major North American sports leagues boasts multi-billion
dollar revenue, massive TV deals, and rapidly rising franchise values.

▶ Cal Golden Bears have produced two #1 draft picks, including Jared
Goff in 2016, who signed a four-year deal with the LA Rams worth
$27.9 million.
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Plan and main questions

We consider the draft as a (centralized) allocation rule, and we
analyze it using the axiomatic approach.

What desirable properties does the draft satisfy? And which of them
help to promote competitive balance?

Could there be better mechanisms that help redress competitive
imbalances?
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Preview of the results
We give two characterizations of draft rules: they are the only
allocation rules satisfying

(1) respect for priority (RP), envy-freeness up to one object (EF1),
resource monotonicity (RM), and non-wastefulness (NW).

▶ RP and EF1 are the main properties related to the preservation of
competitive balance.

(2) respect for priority (RP), EF1, RM, NW, in conjunction with
(population) consistency (CON), top-object consistency (T-CON),
and neutrality (NEU).

▶ here we obtain RP as a consequence of the other properties.

Although drafts are not strategy-proof (SP)...
▶ ... no allocation rule satisfies SP and the competitive-balance

properties, RP and EF1.
▶ ... they satisfy a weaker incentive property that we call maxmin

strategy-proofness.

7



Preview of the results
We give two characterizations of draft rules: they are the only
allocation rules satisfying

(1) respect for priority (RP), envy-freeness up to one object (EF1),
resource monotonicity (RM), and non-wastefulness (NW).

▶ RP and EF1 are the main properties related to the preservation of
competitive balance.

(2) respect for priority (RP), EF1, RM, NW, in conjunction with
(population) consistency (CON), top-object consistency (T-CON),
and neutrality (NEU).

▶ here we obtain RP as a consequence of the other properties.

Although drafts are not strategy-proof (SP)...
▶ ... no allocation rule satisfies SP and the competitive-balance

properties, RP and EF1.
▶ ... they satisfy a weaker incentive property that we call maxmin

strategy-proofness.

7



Preview of the results
We give two characterizations of draft rules: they are the only
allocation rules satisfying

(1) respect for priority (RP), envy-freeness up to one object (EF1),
resource monotonicity (RM), and non-wastefulness (NW).

▶ RP and EF1 are the main properties related to the preservation of
competitive balance.

(2) respect for priority (RP), EF1, RM, NW, in conjunction with
(population) consistency (CON), top-object consistency (T-CON),
and neutrality (NEU).

▶ here we obtain RP as a consequence of the other properties.

Although drafts are not strategy-proof (SP)...
▶ ... no allocation rule satisfies SP and the competitive-balance

properties, RP and EF1.
▶ ... they satisfy a weaker incentive property that we call maxmin

strategy-proofness.

7



Preview of the results
We give two characterizations of draft rules: they are the only
allocation rules satisfying

(1) respect for priority (RP), envy-freeness up to one object (EF1),
resource monotonicity (RM), and non-wastefulness (NW).

▶ RP and EF1 are the main properties related to the preservation of
competitive balance.

(2) respect for priority (RP), EF1, RM, NW, in conjunction with
(population) consistency (CON), top-object consistency (T-CON),
and neutrality (NEU).

▶ here we obtain RP as a consequence of the other properties.

Although drafts are not strategy-proof (SP)...
▶ ... no allocation rule satisfies SP and the competitive-balance

properties, RP and EF1.
▶ ... they satisfy a weaker incentive property that we call maxmin

strategy-proofness.

7



Related literature

Theoretical studies of the draft:
Rottenberg (1956), Kohler and Chandrasekaran (1971), Brams and
Straffin (1979), Brams and King (2005), Budish and Cantillon
(2012), Caragiannis et al. (2019).

Multiple-object allocation problems:
Pápai (2000; 2001), Ehlers and Klaus (2003), Hatfield (2009),
Budish (2011), Biró et al. (2022a; 2022b).

8



Model: Allocations

N = {1, . . . , n} is a set of agents.

O is a set of (potential) objects.

2O is the family of sets of available objects.

Given X ⊆ O, an X-allocation is a profile A = (Ai)i∈N of disjoint
subsets of X.
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Model: Preferences
Each agent i reports strict preferences ⪰i over O.

▶ x ⪰i y means (x ≻i y or x = y).
▶ useful to write, e.g., ⪰i= a, b, c, . . . to specify agent i’s preferences.
▶ ⪰= (⪰i)i∈N denotes a preference profile.

The pairwise dominance extension ⪰P D
i of ⪰i is the partial order on

2O defined as follows: for all S, T ⊆ O, S ⪰P D
i T iff there is an

injection µ : T → S such that µ (x) ⪰i x for all x ∈ T .
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i of ⪰i is the partial order on

2O defined as follows: for all S, T ⊆ O, S ⪰P D
i T iff there is an

injection µ : T → S such that µ (x) ⪰i x for all x ∈ T .

Example
If a ≻i b ≻i c, then

{a, b, c} ≻P D
i {a, b} ≻P D

i {a, c} ≻P D
i {a} , {b, c} ≻P D

i {b} ≻P D
i {c} ≻P D

i ∅,

but {a} and {b, c} are not comparable.
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2O defined as follows: for all S, T ⊆ O, S ⪰P D
i T iff there is an

injection µ : T → S such that µ (x) ⪰i x for all x ∈ T .

Remark
The pairwise dominance extension ⪰P D

i is equivalent to both the
responsive set extension and the additive utility extension. That is,

⪰P D
i =

⋂
Ri∈R(⪰i)

Ri =
⋂

Ri∈A(⪰i)
Ri,

where R (⪰i) (resp. A (⪰i)) is the set of responsive (resp. additive)
preference relations on 2O consistent with the relation ⪰i on O.
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Model: Allocation rules
A problem (⪰, X) comprises a preference profile ⪰ and a set X ⊆ O.

An allocation rule φ maps each problem (⪰, X) to an X-allocation
φ (⪰, X).

A priority π is a linear order on N .
▶ iπj means agent i has higher priority than j.

The draft rule associated with π, φπ, assigns each agent her best
remaining object, one at a time, in the order prescribed by π; the
process repeats once all agents have received an object.a

a

i.e., φπ maps each problem (⪰, X) to the allocation φπ (⪰, X) defined as
follows:Let fπ : N → N denote the picking sequence associated with π:
i.e., if i1π · · · πin, then (fπ (t))t∈N = (i1, . . . , in, i1, . . . , in, . . . ).Recursively define a
sequence (st)|X|

t=1 of selections by s1 = topfπ(1) (X) and, for each t = 2, . . . , |X|,
st = topfπ(t) (X\ {s1, . . . , st−1}).For each i ∈ N , set φπ

i (⪰, X) = {st | fπ (t) = i}.
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Properties: Fairness
An allocation rule φ is

(1) respectful of a priority (RP) if there exists a priority π such that
for each problem (⪰, X) and each agent i,

φi (⪰, X) ⪰P D
i φj (⪰, X) whenever iπj.

(2) envy-free up to one object (EF1) if
for any problem (⪰, X) and any agents i, j ∈ N , there exists
S ⊆ φj (⪰, X) such that |S| ≤ 1 and

φi (⪰, X) ⪰P D
i φj (⪰, X) \S.

RP and EF1 are relaxations of envy-freeness (EF).
RP is a form of no justified envy:
if i (possibly) envies j (i.e., φi (⪰, X) ⪰̸P D

i φj (⪰, X)), then jπi.
both properties are closely related to competitive balance.
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Properties: Efficiency and solidarity
An allocation rule φ is

(3) efficient (EFF) if
for each problem (⪰, X), φ (⪰, X) is not Pareto dominated by any
X-allocation wrt ⪰P D.

(4) non-wasteful (NW) if it always assigns all available objects:
for each problem (⪰, X),

⋃
i∈N φi (⪰, X) = X.

(5) resource monotonic (RM) if
for any preference profile ⪰ and X, X ′ ⊆ O,

X ⊇ X ′ =⇒ φi (⪰, X) ⪰P D
i φi

(
⪰, X ′) for all i ∈ N.
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Properties of draft rules
Proposition 1
A draft rule φπ satisfies RP-π, EF1, EFF, and RM.

RP-π: if iπj, then i prefers the object assigned to her in round k to
the corresponding object assigned to j.

EF1: agent i prefers the object assigned to her in round k to the
object assigned to j in round k + 1.

EFF: no trade is beneficial (in a pairwise dominance sense).

RM: if one more object is added, then at each step the relevant
agent picks from a larger pool of objects.

Characterization 1
An allocation rule φ satisfies RP, EF1, NW, and RM iff
φ is a draft rule, i.e., there exists a priority π such that φ = φπ.
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Proof sketch: Step 1

Lemma 1
If φ satisfies RP-π and EF1, then there is an agent i ∈ N such that

|φj (⪰, X)| = |φi (⪰, X)| whenever jπi

and |φj (⪰, X)| = |φi (⪰, X)| − 1 whenever iπj and i ̸= j.

If i1π · · · πin, then RP-π implies

|φi1 (⪰, X)| ≥ |φi2 (⪰, X)| ≥ · · · ≥ |φin (⪰, X)| .

By EF1, for all i, j ∈ N it holds that

|φi (⪰, X)| − |φj (⪰, X)| ≤ 1.
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Proof sketch: Step 2

Lemma 2
Suppose φ satisfies RM and that φ (⪰, X) = φπ (⪰, X). If x ∈ O\X is
such that, for all i ∈ N ,

y ≻i x for each y ∈ φi (⪰, X) ,

then
φi (⪰, X) ⊆ φi (⪰, X ∪ {x}) for each i ∈ N.

i.e., each agent’s assigned bundle in the smaller problem is included
in her bundle in the larger problem.
i1 must retain her favorite object s1;
otherwise, φi1 (⪰, X ∪ {x}) ⪰̸P D

i1 φi1 (⪰, X), violating RM.
Similarly, i2 must retain her favorite object, etc.
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Proof sketch: Step 3

Let Sk = {s1, . . . , sk} denote the first k selections under φπ at
(⪰, X).

Consider S1 = {s1}:
▶ Step 1 and NW imply φi1 (⪰, S1) = {s1} = φπ

i1
(⪰, S1).

▶ Hence φ (⪰, S1) = φπ (⪰, S1).

Consider S2 = {s1, s2}:
▶ Step 2 implies φi1 (⪰, S1) = {s1} ⊆ φi1 (⪰, S2).
▶ By Step 1 and NW, φi2 (⪰, S2) = {s2}.
▶ Hence, φ (⪰, S2) = φπ (⪰, S2).

... and so on.
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RP and EF1 promote competitive balance

RP and EF1 are crucial for competitive balance:

RP guarantees that no agent envies any agent with lower priority.
▶ Allows leagues to support weaker teams.
▶ Serial dictatorships also satisfy RP (as well as efficiency and

strategy-proofness).
▶ But low-priority agents may envy high-priority ones severely.

EF1 limits the extent to which low-priority agents can envy
high-priority agents.

▶ Ensures weaker teams not favored too heavily.
▶ Prevents “over-correction” of the competitive balance and large

swings in team rankings.
▶ Limits incentives to tank.
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Properties: Incentives

An allocation rule φ is

(6) strategy-proof (SP) if
for each problem (⪰, X), each agent i, and each report ⪰′

i,

φi (⪰, X) ⪰P D
i φi

((
⪰′

i, ⪰−i
)

, X
)

.

(7) weakly strategy-proof (WSP) if
for each problem (⪰, X) and each agent i, there is no report ⪰′

i

such that
φi

((
⪰′

i, ⪰−i
)

, X
)

≻P D
i φi (⪰, X) .

Unfortunately, draft rules are not even weakly strategy-proof:
an agent can benefit by ranking popular objects above unpopular
ones she likes more.
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Impossibility results
No allocation rule can meaningfully improve upon the draft’s properties.

Impossibility 1
No allocation rule satisfies RP, EF1, NW, and WSP.

Impossibility 2
No allocation rule satisfies EF1, EFF, and WSP.

Impossibility 3
If n = 2, then no allocation rule satisfies EF1, NW, and SP.

In Impossibility 1, EF1, NW, and WSP, are indispensable. Does
there exist an allocation rule satisfying EF1, NW, and WSP?
Does Impossibility 3 extend to n ≥ 2? We think so, but
case-checking becomes unwieldy.
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Maxmin strategy-proofness

Although draft rules are not WSP, they satisfy maxmin
strategy-proofness (MSP).

i.e., if an agent evaluates choices based on their worst-possible
outcome (i.e., the outcome that would arise if playing against
adversarial opponents), then truth-telling is optimal.

Theorem
Every draft rule φπ is MSP: for each X ⊆ O, each i ∈ N , each true
preference relation ⪰i, and each additive ui consistent with ⪰i,

⪰i∈ arg max
⪰′

i

[
min
⪰′

−i

ui
(
φπ

i

((
⪰′

i, ⪰′
−i

)
, X

))]
.
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Extension: Variable Populations

N = {1, 2, . . . } is a set of potential agents.

N = {N ⊆ N | 0 < |N | < ∞} denotes all possible sets of agents.

A problem is a triple (N, X, ⪰), where N ∈ N , X ⊆ O, and ⪰ is a
preference profile on X.
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Properties: Consistency
An allocation rule φ is
(8) (population) consistent (CON) if, for any problem (N, X, ⪰) and

any nonempty set N ′ ⊊ N , and any i ∈ N\N ′,

φi

(
N\N ′, X\X ′, ⪰|X\X′

)
= φi (N, X, ⪰) ,

where X ′ =
⋃

i∈N ′ φi (N, X, ⪰).
(9) top-object consistent (T-CON) if, for any problem (N, X, ⪰) and

any agent i ∈ N ,

φi

(
N, X\X ′, ⪰|X\X′

)
= φi (N, X, ⪰) \X ′,

where X ′ =
⋃

i∈N :φi(⪰,X )̸=∅

{
top⪰i

(φi (N, X, ⪰))
}

.

CON is a well-established property (e.g., Ergin, 2000; Thomson,
2011): it guarantees robustness to nonsimultaneous processing of
the agents.
T-CON gives a similar guarantee: it ensures a form of robustness to
nonsimultaneous processing of the objects.
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Properties: Neutrality
An allocation rule is
(10) neutral (NEU) if, for any problem (N, X, ⪰), any set X ′ ⊆ O, and

any bijection σ : X → X ′,

σ (φ (N, X, ⪰)) = φ
(
N, X ′, ⪰σ)

,

where σ (φ (N, X, ⪰)) = (σ (φi (N, X, ⪰)))i∈N and ⪰σ is the profile
obtained from ⪰ by relabelling the objects according to σ.1

NEU ensures that the outcome of the allocation rule is independent
of the “identity” of the objects
(e.g., it rules out the father-son rule in the AFL)

it plays a mostly technical role here, however.

1i.e., ⪰σ is the profile on X ′ such that, for all i ∈ N ,

for all x, y ∈ X, x ⪰i y ⇐⇒ σ (x) ⪰i σ (y) .
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Another Characterization.

Characterization 2
An allocation rule φ satisfies EF1, EFF, RM, NEU, CON, and T-CON iff
φ is a draft rule, i.e., there exists a priority π such that φ = φπ.

here a priority is derived even without assuming RP.

the proof consists of two lemmas:

(1) If φ is an allocation rule satisfying EF1, EFF, RM, NEU, and CON,
then φ agrees with a serial dictatorship on single-unit problems:
i.e., there is a priority π such that φ (N, X, ⪰) = φπ (N, X, ⪰)
whenever |X| ≤ |N |.

(2) Suppose φ and π are such that φ (N, X, ⪰) = φπ (N, X, ⪰)
whenever |X| ≤ |N |. If φ satisfies RM and T-CON, then
φ (N, X, ⪰) = φπ (N, X, ⪰) for all problems.
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Extension: Unacceptable Objects

Setup is the same as the fixed population setup, except:

each preference relation ⪰i is defined on O ∪ {ω}, where ω is the
null object.

the set of acceptable objects at ⪰i is U (⪰i) = {x ∈ O | x ≻i ω}.

the draft rule associated with π is the allocation rule φπ which
assigns agents their top-ranked remaining (possibly null) object, one
at a time, in the order prescribed by π.
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Properties of Allocation Rules

An allocation rule φ is
(1) non-wasteful (NW) if

for any problem (⪰, X), all acceptable objects are allocated.
(2) individually rational (IR) if

for any problem (⪰, X), no agent is assigned an unacceptable object.
(3) truncation invariant (TI) if2

for any problem (⪰, X) and each agent i ∈ N ,

φi (⪰, X) = φi
((

⪰′
i, ⪰−i

)
, X

)
whenever ⪰′

i is a truncation of ⪰i such that φi (⪰, X) ⊆ U (⪰′
i).

2TI is implied by IR together with truncation-proofness (TP) and
extension-proofness (EP).
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Characterization

Characterization 3
An allocation rule φ is

non-wasteful (NW),
resource monotonic (RM),
respectful of a priority (RP),
envy-free up to one object (EF1),
individually rational (IR), and
truncation invariant (TI)

if and only if
φ is a draft rule.
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Summary

Our axiomatic characterizations of the draft suggest that its
properties are suitable for redressing competitive imbalances in
sports leagues.

The draft is not strategy-proof, but truth-telling is optimal if agents
are maxmin utility maximizers.

It is impossible to meaningfully improve on the draft’s properties.
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Thank you!
,
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